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This paper describes the technical approach, hardware design, and software algorithms that have been used by
Team THOR in the DARPA Robotics Challenge (DRC) Trials 2013 competition. To overcome big hurdles such as
a short development time and limited budget, we focused on forming modular components—in both hardware
and software—to allow for efficient and cost-effective parallel development. The hardware of THOR-OP (Tactical
Hazardous Operations Robot–Open Platform) consists of standardized, advanced actuators and structural
components. These aspects allowed for efficient maintenance, quick reconfiguration, and most importantly, a
relatively low build cost. We also pursued modularity in the software, which consisted of a hybrid locomotion
engine, a hierarchical arm controller, and a platform-independent remote operator interface. These modules
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yielded multiple control options with different levels of autonomy to suit various situations. The flexible
software architecture allowed rapid development, quick migration to hardware changes, and multiple parallel
control options. These systems were validated at the DRC Trials, where THOR-OP performed well against other
robots and successfully acquired finalist status. C© 2015 Wiley Periodicals, Inc.

1. INTRODUCTION

One of the goals of the DARPA Robotic Challenge1 (DRC)
is to bring together robotics experts to make a significant
breakthrough in the field of humanoid robotics. There were
few attempts to build a robust, complete, remotely oper-
ated humanoid robot system for practical tasks due to a
number of reasons: the high cost of developing and main-
taining a high degree of freedom (DOF) robot, the difficulty
of developing a robust locomotion engine, the risk associ-
ated with operating a statically unstable robot in uncon-
trolled environments, and the lack of clear motivation. The
DRC provides an opportunity to overcome this situation
and is furnishing a capable common humanoid platform2

and providing research funding to selected teams, as well
as worthy prizes for the winning teams. Figure 1 shows
THOR-OP (Tactical Hazardous Operations Robot Open
Platform), Team THOR’s attempt at designing, building,
and programming a robust low cost, modular disaster
response humanoid robot. In this paper, we provide an
overview of the DRC Trials and describe the technical ap-
proach of Team THOR in detail.

1.1. Problem Statement

The DRC specifically requires a complete system that has
the mobility, dexterity, strength, and platform endurance
required for a practical disaster response situation. More
specifically, the robot should be able to operate in unstruc-
tured environments that include piles of blocks, ladders
and doorways, industrial valves, power tools, and vehicles.
Tasks in this operation domain require full body control and
cohesion among software components hitherto not seen be-
fore. In addition, only a limited bandwidth is allowed for
communication between the robot and the operator, which
penalizes teams who rely heavily on external computation
or direct teleoperation of the robot. Such requirements pose
a great challenge for hardware and software; an especially
short preparation time for the DRC Trials further mandates
a limited development period allowed for each team.

1.2. Scoring and Ranking

The 2013 DRC Trials consisted of eight separate tasks that
required the robot to perform a variety of demanding tasks,

1DARPA Robotics Challenge. http://go.usa.gov/mVj
2Atlas—The agile anthropomorphic robot, http://www.boston
dynamics.com/robotAtlas.html

from maneuvering through doors to operating a power drill
to driving a vehicle. As all tasks were performed in un-
known outdoor conditions, the robot was required to be
skillful and robust.

Each task was broken into three subtasks; one point
is awarded for the completion of each subtask. If the
robot completes all three tasks without human intervention,
teams are awarded another bonus point. Teams are ranked
primarily according to the number of points accrued over all
eight tasks. Tie-breaks are done first using the total number
of interventions (times in which a human could physically
interact with the robot), and then the total time spent.

1.3. Challenges

The competition is challenging as teams must overcome a
number of unsolved problems in humanoid robotics fields
with a short preparation time. Among many technical is-
sues, we view the following problems as the major chal-
lenges for the competition:

� Building a reliable and capable hardware platform
� Robust locomotion in an unstructured environment
� Dexterous bimanual manipulation
� Sliding autonomy for controlling a robot
� Bandwidth-limited remote user interface

Figure 1. The THOR-OP robot approaching the wall to break
while holding a drill in its hand.
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We describe in more detail how we have addressed
each technical difficulty in the following sections. With the
short time frame and varied operation requirements, we
focus development on modularity and cost effectiveness.

1.3.1. Hardware

Our hardware is adaptive in that all of the actuators and
structural parts are modular elements developed for the
commercial market. The robot is assembled simply by bolt-
ing those advanced series of actuators and custom mount-
ing brackets together, allowing us to keep development
costs low and reduce manufacturing and repair times. The
whole robot can be assembled from machined parts in only
24 man hours, and a damaged actuator can be swapped
out on the field within several minutes. With commercial
off-the-shelf parts,3 THOR-OP is one of the least expensive
humanoid robots at the DRC Trials.

1.3.2. Software

We have been developing our modular humanoid robot
software framework over the course of several years (McGill
et al., 2010), using it successfully in the humanoid robotic
soccer domain. It has been tested with different humanoid
robots including the Nao (Gouaillier et al., 2008), the DAR-
wIn series (Muecke & Hong, 2007), and CHARLI (Han,
2012). Due to the extensible nature of the framework, we are
able to quickly port the code to new humanoid robots by
writing only a new interface module and kinematic descrip-
tion. Similarly, we simulate new robots using the Webots
robotics simulator (Michel, 2004) with minimal effort.

In general, we divide the software development into
smaller, reusable projects that can be tested individually to
allow for parallel development without complete knowl-
edge of the whole system. This reusable and easily extensi-
ble nature also drives our interprocess software stack, where
multiple methods access the sensor feeds and robot com-
mands. Finally, we have developed multiple hierarchical
modules for locomotion, manipulation control, and the op-
erator interface that can be dynamically selected to suit the
situation at hand.

2. HARDWARE ARCHITECTURE

For most high-load joints, we use the new PRO series of
Dynamixel actuators developed by Robotis, Co. Ltd. We use
three different Dynamixel Pro actuator types: H42-20-S300-
R, H54-100-S500-R, and H54-200-S500-R. They are rated at
20, 100, and 200 W, respectively, and can be fitted with a
number of different reduction gear boxes.

For the THOR-OP platform, two different gearboxes are
used, one with an in-line output axle and one with a parallel

3http://www.robotis-shop-en.com/

Table I. Specifications comparison of tracks A and B robots
at DRC Trials 2013.

Robot Weight (kg) Height (cm) Wingspan (cm)

CHIMP 181 157 305
Atlas 150 188 260
Valkyrie 130 188 203
RoboSimian 108 164 221
Schaft 95 148 262
HUBO 60 140 204
THOR-OP 49 147 195

output axle. Both gearboxes use cycloidal reduction gears
that have a higher impact tolerance than common harmonic
drives. They utilize 4,096-step absolute encoders (after gear
reduction), which enable precise control. With a maximum
of 502,000 counts per revolution, the user can measure joint
angles to 0.0007 degrees, allowing for high precision con-
trol. The actuators communicate over a serial bus, where
a number of actuators can be connected in a daisy chain
setup. The actuators can be commanded through position,
torque, and speed with electrical current sensing based con-
trol. They are certified by the Korea Testing Laboratory and
the Korea Measuring Instrumentation Research Association
to the specifications provided by the manufacturer.4

2.1. Mechanical Design

The THOR-OP robot consists of 31 Dynamixel actuators, 7
in each arm, 6 in each leg, 2 in the torso, 2 for the head,
and 1 for panning the chest LIDAR (Light Detection and
Ranging). The robot stands 1.47 m tall, weighs 49 kg, and
has a wingspan of approximately 1.95 m.

Table I shows the specification of all track A and track B
robots that participated at the DRC Trials, where our robot
was one of the lightest and smallest robots. Despite the
lightweight and compact design, the robot was capable of
performing all of the heavy duty tasks for the DRC Trials,
which includes manipulating heavy power tools, driving a
vehicle, and walking over uneven terrain reasonably well.
Figures 2 and 3 show the detailed shape, linkage dimen-
sions, and kinematic configuration of the robot.

2.1.1. Lower Body Design

The lower body consists of a pelvis and legs, which have a
total of 12 Dynamixel Pro actuators. We use the conventional
6 DOF leg design used in most of the current humanoid
robots (Ishida, 2004; Kaneko et al., 2004; Kim et al., 2012;
Park, Kim, Lee, and Oh, 2007; Sakagami et al., 2002); it has

4Manufacturer Specifications of Dynamiel Pros, http://www.
robotis.com/xe/DynamixelPro_en
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Figure 2. Front and side views of the THOR-OP robot with
dimensions (units of mm). The arms shown have six DOFs.

three colocated hip joints, one knee joint, and two colocated
ankle joints. Our legs are distinctively wider and thinner
than those of other robots due to the shape of the modular
actuator we use for the legs, and the knee joints have an
offset to achieve a full 180 degrees range of motion (ROM).
Thanks to the leg shape and the extensive knee ROM, the
dismantled leg can be fully folded and stored in a small
suitcase for easy transport. The foot has gone through many
iterations during development, and the current design has
fixed ridges for strength and stiffness. The front of the legs
is covered with thick urethane padding for protection from
a possible fall or knee strike during locomotion.

2.1.2. Upper Body Design

The upper body consists of two arms for manipulation, a
sensor head and a panning chest LIDAR for perception,
and onboard computers for computation. Our initial arm
design was a conventional 6 DOF one (Park et al., 2007),
which has three colocated shoulder joints for pitch, roll,
and yaw, one joint for an elbow, and two colocated wrist
joints. During testing, we found that the 6 DOF arm has a
smaller workspace than required, which gets even worse
with torso movement based balancing control. Thus, we
have revised the arm with three colocated wrist joints. In-
stead of a more common yaw-roll-pitch wrist joint (Lim
et al., 2012; Ogura et al., 2006), we chose a yaw-roll-yaw
configuration, as shown in Figure 5, which has a cleaner

Figure 3. Kinematic configuration of THOR-OP.

structure and has a big advantage when the robot is ro-
tating an object, such as turning a doorknob. Finally, we
extended the arm length for an even larger workspace, as
shown in Figure 5.

The torso section houses the panning chest LIDAR, on-
board computers, and battery compartments; it is connected
to the pelvis with two waist joints. The battery compartment
is located close to the overall center of mass (COM) so that
the robot can work stably with or without batteries. As it
houses the main sensory, computation, and power compo-
nents, it has a steel roll cage that doubles as gripping handles
for additional protection. Above the torso, we have a simple
sensor head connected by 2 neck joints. Table II enumerates
the name, power rating, and range of motion for all the
joints of the THOR-OP robot.

2.2. Modular Structural Components

In addition to the actuators, the robot is mainly built with
standardized structural components that are designed to be
used with the Dynamixel Pro actuators. They are extruded
aluminum tubings and brackets with regularly spaced bolt
holes, and one can easily assemble them with hex bolts.

Journal of Field Robotics DOI 10.1002/rob
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Table II. Specifications of all THOR-OP joints.

Power Rating Range of Motion
Joints (Watts) (Degrees)

Head Head Pitch 20 −90 to 90
Head Yaw 20 −180 to 180

Torso LIDAR Pan 16 −45 to 45
Waist Pitch 200 −15 to 90
Waist Yaw 200 −90 to 90

Arm Shoulder Pitch 200 −180 to 180
Shoulder Roll 200 0 to 180
Shoulder Yaw 100 −180 to 180
Elbow Pitch 100 0 to 160
Forearm Yaw 20 −180 to 180
Wrist Yaw 20 −180 to 180
Wrist Roll 20 −90 to 90

Leg Hip Yaw 100 −60 to 55
Hip Roll 200 −90 to 35
Hip Pitch 200 −90 to 35
Knee Pitch 200 0 to 180
Ankle Pitch 200 −90 to 35
Ankle Roll 100 −90 to 35

Figure 4. The structural components for a single THOR-OP
robot use standardized dimensions.

Figure 4 shows the structural components required for a
single THOR-OP robot; the total man hours needed for a
complete assembly from parts is estimated at 24 h. With the
benefit of the modular construction of the robot, we could
quickly iterate through a number of different designs. Fig-
ure 5 shows the evolution of arm design over the course of
our testing. The evolution of the arm DOF and link lengths
was completed in a short time due to the easily adaptable
design.

2.3. End Effector

One of the few nonstandard parts we use for the robot is the
end effector. Over the course of our preparation for the DRC
Trials, we designed and iterated multiple gripper designs.

Figure 5. Three different arm configurations evolved during
development of the THOR-OP.

The final design incorporates two active fingers controlled
by smaller Dynamixel MX-106R actuators and a passive
palm at the opposing side, shown in Figure 6(a).

2.3.1. Underactuated Finger Mechanism

Each finger has a passive joint with a spring-loaded link-
age mechanism (Laliberte, Birglen, and Gosselin, 2002), as
shown in Figure 6(b). When the finger comes into contact
with an object while closing, the mechanism activates the
second joint, making the finger wrap around the object
(Rouleau & Hong, 2014). In practice, our hand can securely
grip a wide range of objects, including drills, hoses, and
wooden blocks, while being lightweight at only 797 g.

2.3.2. Passive End Effectors

The rules of the DRC Trials specify that the robot may use
multiple end-effectors to suit different tasks as long as the
robot carries all of them throughout the challenge. We used
a number of passive end-effectors for tasks that do not re-
quire finger actuation, mainly to protect the finger mecha-
nism from possible damage. We use three different types of
appendages: straight rods for rotating valves and steering
wheels, hooks for opening and pulling the doorknob, and
a gear-shaped star for tightening the hose tip. They are de-
signed to be robust against possible misalignment, which
allows us to save time needed for fine positioning. Also, we
have designed the appendages to be mounted on the side of
the wrist, so that we do not have to detach the whole hand
and let the robot carry them around.

Journal of Field Robotics DOI 10.1002/rob
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Figure 6. (a) The gripper for the DRC Trials consisted of two
underactuated fingers to wrap around an object, and a rigid
palm to give support. (b) The underactuated mechanism in the
finger.

2.4. Electronic and Power Systems

For the onboard computation, the THOR-OP robot has two
Axoimtek computers with a 1.65 GHz dual core AMD G-
series APU. Communication from these computers to the
actuators goes through a USB interface board and then is
divided into four independent RS485 chains. As each of our
modular actuators has built-in motor controllers and can
be connected in a daisy chain network, our control setup
was simple. Due to the simplicity and efficiency of our soft-
ware, our computation load is light and we choose not to
use a field computer for the competition, instead relying
on a single onboard computer. Although this computer is
not as powerful as some external computation, it proved
capable enough for our approaches. During testing, com-
putation was concentrated in the state machine process,
which handled both the walk engine and arm planning. To-
tal CPU utilization was less than 40%. Memory usage was
quite low, and the six processes together occupied less than
10% of onboard memory.

The robot operates on 24 V for the onboard computer
and actuators, except for the LIDAR and its panning ac-
tuator, which utilizes downconverted 12 V. The computer

Figure 7. The power consumption varies during different
phases of a locomotion cycle. The top shows when THOR-OP
is taking a large step over a threshold 2.5 in. high, while the
bottom represents walking in place (DS: double support, LS:
left support, RS: right support).

power and the actuator power reside on a separate supply to
mitigate harmful current spike effects. THOR-OP has three
LiPo battery compartments, which can power the computer,
upper body, and lower body in parallel to make the robot
operate completely on battery power. However, as the DRC
Trials did not require completely untethered operation, we
used an external power supply for actuators, and we used
the battery to just power the onboard computers. Overall,
the robot is fairly efficient, consuming less than 100 W of
power for most cases, with peak power consumption never
exceeding 480 W. Figure 7 shows the power consumption
of the robot for two different locomotion scenarios.

2.5. Sensory Components

The THOR-OP robot has a broad range of sensors. On the
head, one Logitech C920 HD ProWebcam USB camera pro-
vides up to HD video coupled with a stereo microphone.
To provide visual information from different perspectives,
each wrist is equipped with a Logitech C905 Webcam. Dur-
ing testing, we evaluated an ultra-wide-angle USB camera
to provide additional situational awareness, but we chose
not to use it, as the specific unit occupied the full USB bus
and seriously affected the whole system performance.

The robot is equipped with two ethernet-based
Hokuyo UTM-30LX-EW LIDAR sensors, one on the head
and one in the chest. We tested outdoors and found that the
LIDARs are not affected by direct sunlight even without
any special shades or covers. The chest LIDAR mounted
vertically on a yawing actuator is used to generate a local
three-dimensional (3D) representation of the surroundings

Journal of Field Robotics DOI 10.1002/rob
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Figure 8. The overall control system layout provides impor-
tant separation of modules. Blue represents a device interface,
yellow represents autonomous logic, red indicates a signaling
pathway, green shows a user interface, and gray borders repre-
sent separate processes.

for manipulation. From our testing experience, we were
confident that the 3D mesh from the chest LIDAR provided
accurate enough information for the robot to localize
objects and navigate to target positions.

The head LIDAR, mounted horizontally, is mainly used
to generate a 2D map using the simultaneous localization
and mapping (SLAM) algorithm described in Butzke et al.
(2012), however this is not utilized since all tasks are per-
formed in a small-scale environment setup, where map-
ping is not necessary. Also, using one sensor instead of two
reduced the bandwidth usage, which was advantageous
given the degraded network condition in the DRC trials.

We used a Microstrain 3DM-GX3-45 inertial sensor lo-
cated close to the center of mass of the robot. For pose es-
timation, we utilized its raw accelerometer and gyro data
and its extended Kalman filtered inertial estimates.

3. SOFTWARE ARCHITECTURE

There are many advantages to modular software design.
Each module performs logically discrete functionality, built
separately from each other. When assembled together in the
proper hierarchy, they constitute the application program.
This type of system is reusable and extensible; in fact, we
reused many modules from our own open-source code base
for RoboCup (McGill et al., 2010) to save time and effort.
Overall, we utilized C/C++ for low-level drivers, Lua for
high-level state machines and libraries, and JavaScript and
HTML5 for the user interface. Where heavy mathematical
calculations were needed in Lua, we utilized the Torch7
library (Collobert, Kavukcuoglu, and Farabet, 2011) and its
C API.

3.1. Core API

To achieve the modular design shown in Figure 8, each mod-
ule needs to be able to communicate with the others. We use

a combination of Boost managed shared memory segments5

and ZeroMQ6 channels. A remote procedure call system al-
lows us to access shared memory through a NodeJS7 server.

In addition to the communication core, we also have an
abstract API that can work with a broad range of simulated
or physical humanoid robot platforms. To do this, we main-
tain a number of configurations that store robot-specific
parameters, such as sensor parameters, joint offsets, and
walking parameters. Generic robot commands and queries
are thus translated into robot-specific kinematics and mo-
tor packets, with the intention that a new robot platform
needs only a similar module conforming to the API. In fact,
we have the configuration for the simulated ATLAS model,
which has helped us to revise our own hardware configu-
rations during the early stage of development.

3.2. Sensor System

We set aside separate processes to interface each sensor:
cameras, laser scanners, inertial measurement unit (IMU),
and microphone. The camera and microphone information
is directly sent over the noisy network to the human
operator, compressed over a user-selectable user datagram
protocol (UDP) or transmission control protocol (TCP)
connection. The laser scanner information and appropriate
metadata are sent over a reliable channel to the processes
in an onboard computer, which includes the mesh-building
process, which accumulates them to build a complete 3D
scan of surroundings, and the SLAM process, which runs
a 2D SLAM using the raw LIDAR data. The IMU readings,
on the other hand, are set directly in shared memory.

3.3. Motion Control Architecture

Our motion control ranges from low-level topology of mo-
tor connections to high-level joint limits and human-guided
motor information requests. With a well-connected hierar-
chy of control, a human can leverage both high-level com-
mands and access low-level data, depending on the need.

3.3.1. Low-level Motor Access

The THOR-OP robot has a total of 31 Dynamixel actua-
tors that can communicate over a serial bus, connected in
a daisy chain setup. In the base case, we can set a motor
command or read current status for a single actuator, which
requires a long time to complete if we iterate on all actu-
ators in sequence. For this reason, the actuators support a
synchronized command structure where a single packet can
read or write multiple actuators at once. To further speed

5Boost c++ libraries. http://www.boost.org
6P. Hintjens (2010). ZeroMQ: The Guide. http://zguide.zeromq.
org/page:all
7Node.js webserver. http://www.nodejs.org
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up the communication, we use four daisy chains to han-
dle four limbs in parallel. Extra actuators from the head,
chest, and waist are divided appropriately onto each chain.
Additionally, separating the chains yields better electrical
characteristics and fewer timeouts due to packet loss based
on our experiments.

We use a conservative approach of not reading from
the servos at all except for the initialization process, to make
sure that the communication speed is not slowed down by
corrupt readings either from a damaged actuator or a bad
connection. We would like to increase our performance and
ability in reading motor states.

3.3.2. Motor Manager

On the computer, we establish a dedicated process to com-
municate with actuator buses of the robot, which we called
the motor manager. The role of this motor manager is to
read commands from a shared memory segment, and to
relay these commands to the motors. If the shared mem-
ory indicates a read operation request, then it will enqueue
this instruction as well and receive the data packet from
motors and write back to a shared memory segment. The
motor manager also clamps commanded angles between an
admissible range to prevent joint-level self-collisions.

3.3.3. Shared Memory Access

We use shared memory throughout our software system, in-
cluding our motor manager. This means that separate pro-
cesses can control the motor commands and request motor
information without any special broker and without resort-
ing to running a fully integrated motion process. Practically,
we are able to use a separate upper body motion controller
and lower body motion controller to control the arms, neck,
and waist and to control the leg joints, respectively. The
two controllers function separately, which enables the robot
to locomote during manipulation, yet they are coupled so
that the robot can stay balanced in spite of different arm
configurations.

3.4. Communication Architecture

In the DRC Trials, the bandwidth and latency over the
IP network alternate each minute between good and bad
conditions. The good communication condition is 1 Mbps
bandwidth paired with 100 ms round trip delay, while bad
communication is 10 Kbps paired with 1,000 ms. Due to the
expectation of changing and limited available bandwidth,
we allow for operator-specified on-the-fly configurable
compression techniques and transmission frame rates of
camera and LIDAR data.

In addition to raw sensor data encoding, we need
to transmit metadata and other structured information.
As our framework relies heavily on two different script-
ing languages, methods for serializing objects between

processes and across language boundaries are important.
We have created a custom Lua wrapper to the Mes-
sagePack8 encoder, so that we are able to send and receive
arbitrary messages across the network quickly and reliably.
Robot data are transformed to browser data: from Lua
userdata to JavaScript typed arrays and from Lua tables
to JavaScript objects. Also, the serialized data are easily
logged and replayed, providing a way to diagnose and
debug our processes.

For low-level access, the operator interface is an inter-
active Lua interpreter using the proven Secure Shell (SSH)
protocol to manipulate state machines and shared mem-
ory. Additionally, on the operator console, reliably delivered
TCP messages and unreliable raw UDP packets broadcast
from the robot are bridged to WebSocket messages; any
number of channels can be forwarded to the operator. This
system relays only state machine events and shared mem-
ory access, similar to a command line interface; the main
addition is listening for sensor data. The sensor feeds are
toggled on and off and modified via shared memory vari-
ables.

While these interprocess channel assets reside on one
single computer, we leverage request/reply methods and
UDP fallbacks to provide a remote operator with access.
For example, the remote operator can perform high-level
arm behaviors by sending final-state machine (FSM) tran-
sition events, or even directly manipulate the joint angles
by remotely accessing shared memory variables. For high
bandwidth sensor feeds, the user can dynamically select
between reliable and unreliable protocols.

We have tested extensively with settings on the Mini
Maxwell network shaper of the competition. We have
tested our network setup under more duress than the
competition would provide, dropping 25% of packets,
enabling reordered packets, and doubling the round trip
lag to 2,000 ms. We are able to communicate effectively
with the robot, and we observed no incorrect behavior. Our
testing provided a larger degree of safety certainty and
assurance of at least network robustness.

Shown in Figure 9 is an example of our network usage
for a 2 min window in which THOR-OP was picking up
the drill. Data spikes occurred when we requested a “slow
mesh.” Sometimes, the mesh requests clog our network un-
der poor network settings. When this occurs, we turn off
our camera feed to let the buffer of delayed packets empty,
as was done around the 80 s mark. As can be seen, a minimal
amount of data was sent to the robot.

3.5. Simulation Support

We use Webots (Michel, 2004) as the simulation environ-
ment for development. Webots is a multiplatform commer-
cial robotic simulator we successfully have been using with

8Messagepack serialization library. http://www.msgpack.org
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Figure 9. Network usage for picking of the drill during poor
network conditions. A 5 s moving average was applied.

our previous development for RoboCup. It supports a va-
riety of sensors and actuators out of the box, and the sim-
ulated sensors can be easily turned on and off depending
on needs. On our laptop computers, we simulate the robot,
with sensors turned on, three times faster than real time, or
around 15 to 20 times faster than real time with the sensors
off.

The mass model for the simulation is calculated from
the CAD model of the THOR-OP robot, which we have
found to be fairly accurate. Due to the modular construction,
a large proportion of the total mass is concentrated at the
actuators. Thus, our simulated model with point masses at
the actuator positions closely matches the actual robot.

In addition, the ease of adding and modifying models
in simulation helps us to design the passive end-effectors.
We have improved and validated each design by running
many manipulation tasks and checking performances in the
simulation. This process saves a great deal of time and effort
for prototyping and manufacturing.

4. UPPER BODY CONTROL

We have constructed an upper body motion controller that
governs the neck, arms, and waist joints. Bimanual manip-
ulation itself is a challenging task, especially when each
arm has a redundant DOF. It becomes even harder with hu-
manoid robots, as they should balance themselves against
a changing mass distribution and external forces during
manipulation. In this section, we describe how we have de-
signed our upper body motion controller to satisfy these
requirements.

4.1. Arm Controllers

At the lowest level, we apply direct control over each joint
angle. This control mode is useful in emergency situations,
for instance when the standard inverse-kinematics (IK) -

based control is unable to generate solutions at singular
points. As the full body balancing controller is suspended
during the joint-level control, we limit its use for emergency
situations only.

Another way to control the arms is by controlling the
target pose of end-effectors in a 6D Cartesian space. The
operator specifies the desired target pose of end-effectors by
position {x, y, z} and orientation in Euler angles {ϕ, θ, ψ},
then the arm planner calculates, in joint angle space, the
trajectories for the end-effector to reach the target pose.

Due to the 45 degree offset of the end-effector’s palm,
the change of the target orientation alone usually results
in the large movement of the whole arm, which is not de-
sirable. Thus, we also provide the wrist rotation control,
which only changes the wrist joint angles to modify the
end-effector orientation.

Some motions require additional constraints on the
end-effector trajectories, so we provide a number of task-
specific, parametrized arm trajectories and allow the oper-
ator to have control over the parameters. For example, the
door opening motion has the following parameters:

Popen door = {
xyhinge, yknob, zknob, ygrip, ϕknob, ψdoor

}
, (1)

where xyhinge is the x and y coordinate of the door hinge,
yknob and zknob are the y displacement and the height of the
door knob axle, ygrip is the relative y displacement of the
gripping position from the door knob axle, and ϕknob and
ψdoor are the roll and yaw angles of the door knob and the
door. The operator can specify the knob angle parameter
ϕknob to rotate the knob and the door angle ψdoor to open or
close the door.

4.1.1. Task Level Control

For the DRC Trials, we approached each manipulation task
as a sequence of phases, e.g., gripping phase, opening phase,
turning phase. During each phase, the operator was able to
fine-tune the active controller, be it joint angles, end-effector
poses, or parametrized trajectories. At the end of each phase,
the operator can choose to advance to the next phase, fine-
tune end-effector poses, or revert back to the previous phase.
We make sure that all the phases are reversible, so that
the robot can retry subtasks with minimal delay. Figure 10
shows the intermediate phases of the loaded door opening
task.

4.2. Arm Planner

Except for the joint-level control, the arm control interface
generates a sequence of target poses for the end-effectors
as a reference trajectory. These poses are passed to the arm
planner to calculate the corresponding sequence of joint
angles. The robot must calculate a trajectory connecting the
current pose through the target poses, conforming to the
joint limits and kinematic constraints. We use a simple linear
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Figure 10. The multiple phases of the loaded door opening task.

interpolation over Cartesian space for trajectory generation.
Due to the redundancy of the arm’s DOF, we can find IK
solutions for most of the points in the straight line between
two poses.

4.2.1. Joint Angle Trajectory Generation

For each pose in the pose trajectory, we calculate the corre-
sponding joint angles to build a joint angle trajectory. The
arm has redundant DOF yielding an infinite number of IK
solutions, thereby requiring a costly optimization problem
to find the best solution in general. To simplify the process,
we keep only one joint angle, the shoulder yaw angle, as
the variable to optimize. If we fix one joint angle, the arm
has now only 6 DOFs with colocated wrist joints, which
has an analytical inverse kinematics function that can be
calculated efficiently. The resulting joint angles become an
analytic function of the shoulder yaw angle, which we can
minimize easily. We define the cost function as

J =
7∑

i=1

[M(mi, ji(k) − jmax
i ) + M(mi, ji(k) − jmin

i )]

+ k1M(m6, j6(k)) (2)

+ k2

7∑

i=1

|ji(k) − ji(k − 1)|,

where ji is the joint angle, jmin
i and jmax

i are the joint angle
limits, mi is the minimum margin allowed for joint i, and k1

and k2 are weight parameters. M is the non-negative margin
function, which is defined as

M(mmax, x) = max(0, mmax − |x|). (3)

Then the cost function penalizes joint angles near the
joint angle limit, the wrist roll angle near the singularity,

and large movements from previous joint angles. Optimiza-
tion is done by greedy stochastic descent, which samples a
number of shoulder yaw angles around the current angle,
selecting the one with minimum cost. We have found that
this sampling-based approach generates joint angle trajec-
tories that effectively use all seven DOFs of the arms while
avoiding possible singularities.

4.2.2. Joint-level Interpolation

After we calculate the joint angles for all the poses in the
pose trajectory, we interpolate the resulting joint angle tra-
jectory in the joint space to generate a continuous joint-level
movement. We chose the interpolation in joint space rather
than interpolation in pose space, as the latter requires more
computation and has the risk of confronting singularities,
which may result in getting stuck or reaching joint velocities
higher than the actuator limit. On the other hand, the inter-
polation in joint space is always possible, and we can use
the angular velocity constraints to determine each duration
of movement so that the end-effector always follows the
reference trajectory while satisfying the joint velocity lim-
its. One disadvantage of this approach is that the resulting
end-effector pose trajectory will not follow a straight line,
but we have found that with the resolution we use for the
pose trajectory, the resulting motion is smooth enough for
practical purposes.

4.3. Torso Movement Compensation

Manipulation is harder with humanoid robots, as com-
pared to wheeled robots. Due to their upright posture and
small support area, humanoids are more susceptible to top-
pling over with the additional weight of grabbed items,
or even the relocated mass of outstretched arms. Any arm
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movement can change the COM position of the robot,
which, in turn, can make the robot unstable without proper
balancing control.

We handle this problem by moving the torso so that
the overall center-of-mass position remains fixed during
arm motion. However, this torso movement will change the
end-effector positions as well. The arm configuration should
be adjusted to compensate for the shifted torso position in
order to achieve the desired end-effector pose. If we assume
the torso shift at the discrete time k to be COMshift(k), it
should satisfy the following simultaneous equations:

qlarm(k) = IKlarm[plarm(k) − COMshift(k)],

qrarm(k) = IKrarm[prarm(k) − COMshift(k)], (4)

COMshift(k) = COMub[qlarm(k), qrarm(k)],

where qlarm and qrarm are joint angles for each arm, IKlarm

and IKrarm are inverse kinematics functions, and COMub is
the function that calculates the COM displacement of the
upper body given arm joint angles. As Eqs. (4) are nonlin-
ear simultaneous equations, we use the following online
approximation instead:

COMshift(0) = 0,

qlarm(k) = IKlarm[plarm(k) − COMshift(k − 1)],

qrarm(k) = IKrarm[prarm(k) − COMshift(k − 1)], (5)

COMshift(k) = (1 − γ ) · COMshift(k − 1)

+ γ · COMub(qlarm(k), qrarm(k)),

which incrementally moves the COM offset COMshift to sat-
isfy Eqs. (4). We tune the mixing parameter γ to speed up
or slow down the convergence to the desired pose.

5. LOCOMOTION CONTROL

In this section, we describe the lower body motion con-
troller, which controls leg joints to make the robot walk.
During the task, the robot is supposed to walk over various
types of terrain. We provide a number of control interfaces
to suit different tasks. Bipedal locomotion in uncontrolled
environments is one of the most difficult tasks of the whole
challenge, and it has been an active research topic for hu-
manoid robotics for years.

5.1. Walk Controller Interfaces

This basic option provides the capability to change the
walk velocity of the robot in real time. At the end of each
step, the robot calculates the next step position based on
its current foot configuration, commanded walk velocity,
and kinematic constraints. This type of control allows for
direct teleoperation of the robot using a joystick, and the
robot can quickly change its velocity to adapt to a dynamic
environment. However, as the communication bandwidth

is strictly limited, and none of the DRC Trials tasks had a
dynamically changing environment, we had little reason to
use this interface for the DRC Trials.

The other interface option for locomotion specifies the
target pose the robot should move to, which is defined as
{x, y, ψ}. When the target pose is set, the step planner gen-
erates a number of consecutive steps considering the walk
velocity constraint and kinematic constraint. As this option
plans for the future foot step positions in advance, this al-
lows the use of a zero moment point (ZMP) preview-based
walk controller. We used this combination during most of
the DRC Trials.

Although most of the tasks assume a relatively flat sur-
face, some tasks require the robot to move over surfaces
with different heights or inclinations. This situation some-
times forces the robot to take a much larger stride than
usual. Larger strides are undesirable and are undertaken
only as needed since they can hamper stability. We handle
such cases as special events only performed by request, and
we provide a separate control interface for them.

5.2. Walk Controller

The walk controller generates the torso and feet trajectories
that make the robot step to the target poses while keep-
ing dynamic balance. To cope with different requirements
for locomotion, we provide multiple walk controllers with
different characteristics. In addition to providing multiple
walk controllers, we also provide the ability to dynamically
switch between them during locomotion (Yi et al., 2013),
which we name our hybrid walk controller.

The reactive walk controller (Yi et al., 2011b) is based
on the analytic solution of the linear inverted pendulum
model (LIPM) dynamics equation with fixed height. To get
the solution in a closed form, we specified the reference ZMP
trajectory as a piecewise linear function and put constraints
on the boundary conditions of the COM. The resulting torso
trajectory has velocity discontinuities at step transitions,
which makes the robot stumble when it takes a first step. To
solve this issue, we use the hybrid walk controller approach,
where the first and last steps are handled by the preview
walk controller.

The preview walk controller is based on the optimiza-
tion of the torso trajectory to minimize the ZMP error over
its preview period (Kajita, Kanehiro, Kaneko, Fujiwara, and
Yokoi, 2003). By definition, it requires a ZMP trajectory in
advance, so future foot step positions should be provided
to calculate the trajectory. We assume a LIPM model and
fixed center-of-mass height for the robot, which allows us
to utilize an efficient quadratic optimization method, where
the optimization can be iteratively done by a simple matrix
multiplication at every step.

Finally, for more challenging terrains, the robot may
need to take larger strides. Here, the point mass assumption
of the LIPM can induce large amounts of error and make the
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Figure 11. THOR-OP robot demonstrating dynamic bipedal walking capability.

robot unstable. For these steps, we have a more refined ver-
sion of the preview walk controller, which relaxes the point
mass assumption and fixed COM height assumption we use
for other controllers. The initial torso trajectory is generated
by the standard preview walk controller, and the ZMP error
of the initially generated motion is calculated using a multi-
body model of the robot. Another stage of preview control is
applied to minimize the multibody ZMP error. Although it
generates the most stable trajectory among walk controllers,
this controller requires much more computation than oth-
ers, so we use this controller only for special steps. Figure
11 shows the robot in a walking experiment.

5.3. Balancing Controller

The robot has to withstand a number of static and dynamic
perturbations from many sources, which includes uneven
terrain, contact with surroundings, reaction forces from ma-
nipulation, and changes of mass distribution. We use var-
ious balancing controllers to stabilize the robot during the
task.

5.3.1. Arm Movement Compensation

A dynamic movement of the arms, or even a different pos-
ture of arms, can negatively affect the balance of the robot
unless it is compensated properly. The effect of the arm
movement can be calculated in advance using the mass
model of the robot in the ZMP of the upper body,

pupper body =
∑{mi[(z̈i + g)xi − ẍizi] + Ii θ̈i}∑

mi(z̈i + g)
, (6)

where mi is the mass, xi and zi are the x and z positions of
the center of mass, Ii is the inertia, θi is the angle of the ith
rigid body of the robot, and g is the gravitational constant.
The upper body ZMP pupper body can be subtracted from the
reference ZMP to make the whole robot balanced during
dynamic upper body movements.

During the DRC Trials, we used a conservative arm
joint velocity limit. For quasistatic cases, we can ignore the

Figure 12. The quasistatic full body balancing control moved
the torso significantly to offset the weight of the arms.

linear and angular accelerations ẍi , z̈i , θ̈i to simplify Eq. (6)
as

pupper body =
∑

migxi∑
mig

, (7)

which is the x component of the center of mass.
Figure 12 shows the change of torso position to compen-
sate for different arm configurations of the robot.

5.3.2. Push Recovery Control

Humans are known to perform a number of distinct behav-
iors to reject external perturbations. This includes the ankle
strategy, which uses the ankle control torque to keep the
center of mass within the support polygon, the hip strategy,
which uses angular acceleration of the torso and free limbs,
and the step strategy, which uses reactive stepping toward
the direction of the external force to change the support
polygon of the robot.

All three push recovery behaviors have been success-
fully implemented on position-controlled humanoid robots
before (Yi et al., 2011a). We chose not to use the hip and
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Figure 13. 3D constructions provided from the LIDAR with different settings. (a) Fast mesh, (b) slow mesh.

step strategies at the time of the DRC Trials, as we were not
sure of the long-term effect of the quick torso rotation on
the actuators, and the preview-based walk controller did
not allow for reactive stepping. Instead of those two push
recovery strategies, we used a simple stop reflex in addition
to the ankle strategy. This makes the robot stop walking
and lowers the center of mass to resist large perturbations.
The decision boundary to trigger a stop reflex can be deter-
mined by inspecting the theoretical stability region of the
ankle strategy,

∣∣∣∣
ẋ

ω
+ x

∣∣∣∣ <
τmax

ankle

mg
, (8)

where ω is the natural frequency of the robot, and τmax
ankle is

the effective maximum ankle torque, which can be found
by trial and error for the actual robot.

Although simple, we have found that our push recov-
ery controller works quite well in practice, which enabled
THOR-OP to successfully survive many hazards, including
inclinations, bumps, and multiple contacts.

6. PERCEPTION SYSTEM

The perception system is responsible for providing the hu-
man operator the information of the task environment, as
well as the current and estimated states of the robot needed
for motion control. Our sensor selection includes an IMU,
multiple RGB cameras at the head and wrists, two LIDARs,
and joint encoders in every joint. Among those sensors, the
IMU and encoders are used constantly for state estimation
and balancing of the robot; all others provide on-demand
data for the operator, depending on need and network
quality.

6.1. 3D Reconstruction

We solely use the LIDAR located within the chest of the
robot, which scans vertically while being actuated horizon-
tally. We use 90 degree and 60 degree vertical and horizontal

fields of view, respectively, and store scans into a cache. On
the operator computers, three-dimensional information is
computed from the LIDAR depth cache based on mesh tri-
angulation algorithms (Holz & Behnke, 2013).

To adapt to the limits of bandwidth usage, we filter and
compress the LIDAR readings before sending to the oper-
ator. First, we filter depth information, saturating readings
outside of user-adjustable bounds. The depth readings are
then mapped into integers between 0 (lower bound) and
255 (upper bound). The integer values are compressed with
either PNG or JPEG compression. Since the user can tweak
the range filter and compression technique, we always keep
the raw readings in memory.

When the robot is far away from the object to be manip-
ulated, we use the “fast mesh” setting with bounds of 1 cm
and 5 m away and lossy JPEG compression. This produces
a noisy mesh for approximate navigation and distance es-
timation. Since the packet size is small, we can request this
image quite frequently without incurring network penal-
ties. When the robot is close to an object of interest, the op-
erator obtains a “slow mesh” that uses bounds of 1 cm and
1 m with lossless PNG compression. This finer resolution
cannot be requested often under poor network conditions,
however. Figure 13 shows 3D construction results with both
settings.

6.2. Video Processing

We used multiple camera streams to provide robot views to
the human operator. The main camera was mounted at the
head, with two additional cameras mounted on each hand.
The operator views from the hands during manipulation
proved extremely helpful for turning the valve and gripping
the drill, which required precise depth perspective at all
times. Figure 14 shows the camera images from different
perspectives.

The quality of both the head and hand cameras can
be specified by the user through shared memory variables.
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Figure 14. Multiple cameras provided different perspectives for manipulations. (a) Head camera, (b) hand camera.

Table III. Sensor stream settings.

Visual
Compression

Format
Quality
(0–100)

Interval
(Hz)

Frame Size
(kB)

Fast Mesh JPEG 90 0–0.5 5–20
Slow Mesh PNG – – 30–40
Head Image JPEG 60 0.5–2 3–5
Hand Image JPEG 50 0.5 3–5

Resolutions are 160 by 120 pixels for the hand camera and
320 by 180 pixels for the head camera typically. In general,
we modulate the transmission rate between 0.5 and 5 Hz,
with JPEG compression primarily. Certain situations (grip-
ping the drill, for instance) call for a single high-quality PNG
image. In general, low resolution and low frequency pro-
vide adequate operator awareness of the environment and
end-effector positioning during the competition. We have
found that at higher resolutions (large amounts of data),
with the poor network profile, packets begin to overflow
the network, and we incur latencies of around 10 s until
the good network profile is activated. Due to this, we kept
our camera settings conservative through the competition,
as shown in Table III.

6.3. Audio Feedback

One issue we have had with testing the DRC tasks is that it is
can be hard for the operator to determine whether the robot
has successfully triggered the drill based on low-frame-rate
video alone. To handle this issue, we use the built-in micro-
phone of the head camera to get audio feedback from the
robot. The remote operator, when needed, requests a 5 s au-
dio clip recorded at 16 kHz, compressed in the MP3 format
with a bit rate of 8 kbps. The size of such an audio file is
under 30 KB (similar to our PNG mesh images), so it adds
little burden to the network when being transmitted.

Figure 15. The operator interface setup included three main
screens for the user to guide the robot and observe its environ-
ment.

7. OPERATOR CONSOLE

The basic operator setup is shown in Figure 15, which in-
cludes a laptop, an external display, and a tablet. The mon-
itor displays the head camera feed, while the tablet takes
touch inputs for gripper control and displays the visual
feedback or the hand camera feed. The main laptop screen
shows the 3D scene with the robot model and the pertinent
buttons for commanding the robot. During the DRC Trials,
we used a second laptop to monitor various processes and
provide low level robot control. Figure 16 describes the sys-
tem layout of our operator console that allows for multiple
machines to be used simultaneously.

We access shared memory and send state machine
events through a Lua interpreter over SSH for low-level
modifications of robot behavior, with hotkey scripts for
common tasks. Figure 13 shows a complementary in-
browser graphical user interface (GUI) that, using the
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Figure 16. The system layout for the operator interface
allowed multiple machines to be used simultaneously.

THREE.js9 framework, shows a mesh of LIDAR returns and
a figure of the robot from joint and inertial feedback.

The human operator interacts with the GUI in a number
of ways. Standard hotkeys request LIDAR data, send state
machine events, or modify object parameters. Double click-
ing on regions of the 3D scene perform raycasting to “pick”
points in the virtual world and trigger special callback func-
tions. As we have described in Section IV, the task level
manipulation is composed of a sequence of parametrized
motions with subtask-specific model parameters such as
Eq. (1). The operator workflow revolves around acquiring
and fine-tuning these model parameters.

7.1. Model Matching

We developed autonomous algorithms to determine the
model parameters for certain tasks. Our algorithms smooth
the 3D mesh and extract contour lines before optimizing in
parameter space to find the best fit. The algorithm is per-
formed at the operator side, and we found it to work well
for tasks such as the valves or walls. However, for the actual
DRC Trials, we decided to use the slower but more reliable
human-in-loop approach.

We let the operator analyze the current sensory infor-
mation and visually match the model parameter using the
GUI. The operator is given multiple camera video feeds
and the 3D mesh of the manipulation target. Once the ini-
tial model is acquired through the GUI, we overlay object-
specific 3D geometries over the scanned mesh, such as a

9R. Cabello. Three.js JavaScript webgl library. http://www.
threejs.org

torus for the valve and a cylinder for the hose. The operator
can further move and rotate the visualized model to fine
tune and match the 3D mesh. We have found this process to
be intuitive and efficient, and it took only a few seconds for
the operator to acquire the model parameters in most cases.
For us, avoiding errors is favored over quick task execution,
but fast and reliable autonomous humanoid manipulation
remains a challenging area of research.

7.2. Model Override Control

If the robot is given the precise model parameters for the
current subtask, the robot should be able to autonomously
complete the manipulation subtask without any human in-
tervention. In reality, we have found that sometimes the
initially perceived model is not good enough for continual
usage, and we need to manually update it based on visual
feedback. We prefer fine-grained control over our robot’s
behavior for many tasks. For example, the robot is sup-
posed to fully close the valve until the steam flow ends: it
would be disastrous if the robot had to rotate the valve a few
more degrees yet the user could not send such a command.
Therefore, we provide the control interface to modify the
task-specific model parameters such as Eq. (1) in real time
during manipulation.

In emergency cases, the operator can directly move the
end-effectors outside of the model constraints, by speci-
fying the target position {x, y, z} and orientation in Euler
angles {ϕ, θ, ψ}. During the Trials, we had no critical emer-
gency cases in which we used these low-level end-effector
overrides.

7.3. Gripper Interaction

We devote an entire tablet for manipulation control.
Through another web page, the user is able to request po-
sition, temperature, and other diagnostics from the grip-
per servo motors. Additionally, the user can execute a few
grip commands for each finger. Since we use torque con-
trol (via desired current) for the fingers, we allowed for
high (900 mA), low (200 mA), zero, and opposing (45 mA)
currents for triggering, gripping, softening, and opening,
respectively.

7.4. Locomotion Interface

We provide a simple locomotion control driven by way-
points in either the local frame or the global frame. As noisy
odometry information is our sole source of localization, we
ensure that we never command the robot to move too far
at one time. When the manipulation target is far away, we
let the operator manually select intermediate target poses.
Although our walk controller supports full omnidirectional
walking, we prefer to give only one direction at a time—
forward, sidestep, or turn—to maximize the stability during
the locomotion.
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Figure 17. THOR-OP at the 2013 DRC Trials performing four of five tasks in which it scored points.

Using the task-specific model parameters, we guide the
robot to the ideal position for manipulating the target object.
The ideal position, stored as a local offset from the object, is
sent to the footstep generator to calculate a number of omni-
directional footsteps. As our footstep generation algorithm
assumes free space without obstacles, we only use this con-
trol for the fine-tuning positioning for manipulation targets.

8. TESTING AND TRIAL PERFORMANCE

The DRC Trials 2013 were held at the Homestead Motor
Speedway in Florida. THOR-OP, representing Team THOR,
attempted all eight tasks set forth by the DRC and competed
well, only succumbing to a couple of unexpected hardware
and setup logistics issues. Figure 17 shows THOR-OP per-
forming several tasks during the competition. Overall, we
accrued eight points and finished in 9th place out of 16 teams
(see Table IV). In this section, we would like to present in
detail the experiments during preparation as well as the
trial performances for some of the tasks.

8.1. Vehicle Task

Only 7 out of 16 teams attempted this task, and eventually
four teams scored. Although our team had never practiced
for this task before the trials, we ended up scoring one point,
which was a big achievement as no team could get the sec-
ond point. We confidently attempted this task due to several

considerations. First, THOR-OP, being relatively small and
lightweight, was easy to accommodate into the vehicle with-
out many limitations on the robot’s workspace. Another
reason was that the driving task conceptually consisted of
two simple tasks: turning the steering wheel and stepping
on/off the throttle. The former was similar to the valve task,
about which we were quite confident, and stepping on and
off the throttle basically only involved the control of the an-
kle and knee pitch motors, which could be performed easily
with direct joint-level control.

A passive end-effector consisting of three rods in a tri-
angular pattern was mounted on the robot’s right hand
for steering the wheel. Markers were taped on the steer-
ing wheel to help the operator visually see how much the
wheel had rotated. In addition to the head camera provid-
ing the front view, another camera on the left gripper was
used to monitor the vehicle’s front left wheel to increase
the certainty in steering control. The vehicle’s acceleration
was adjusted by changing the duration of the robot’s foot
pressing down on the throttle. We toggled between 1.5 and
3 s depending on various situations.

Team THOR completed the driving in about 22 min,
without hitting any obstacles. It took 2–2.5 min for THOR-
OP to pass each barrel except for the first one, which took
about 8 min because the operator needed time to get familiar
with the course and the operations. A simple stop-steer-
move strategy was applied and the route the vehicle took
was quite smooth without hard turns.
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Table IV. Trial performance of team THOR.

Vehicle Terrain Ladder Debris Door Wall Valve Hose

Scores (max. 4) 1 0 1 0 1 0 4 1
Interventions 0 1 0 0 0 1 0 1
Time Duration 22:27 30:00 07:14 06:24 29:45 30:00 15:31 30:00

8.2. Valve Task

Instead of using an actuated gripper, we decided to use a
passive two-spoke mechanism as the end-effector for the
valve task in pursuit of reliability and efficiency. The robot
simply needed to align the end-effector to the valve center
and maintain its perpendicularity to the valve plane. Then
the valve turning task could be performed by rotating only
the wrist, rather than moving the whole arm. It largely sim-
plified the motion control and reduced the power consump-
tion for the valve task from about 140 to 100 W. Moreover,
using a passive end-effector allowed continuous rotation of
the wrist without cables being tangled.

The use of the hand camera on the other gripper to
feature a side view of our valve approach played a crucial
role in improving our success rate on this task by increasing
the operator’s awareness of the relative position of the end-
effector to the valve.

During our official trial, the most time-consuming part
turned out to be the robot’s approach to the desired position.
Here, the workspace of the arm included the task-specific
workspace needed to turn the valve entirely. To ensure a sta-
ble and less drifted walk during the competition, the robot
was only commanded to move in pure rotation or pure
translation in one direction. One unexpected situation in the
valve task was that a high torque was required to turn the

small valve, yet the full body stability and two-spoke pas-
sive mechanism enabled us to complete the rotation without
a problem. Team THOR was the fastest to complete the valve
task without any intervention, using less than 16 min, and
it was awarded Best Task in Valve.

8.3. Door Task

We performed ample tests, both simulation and the real
world, to determine the most suitable body pose and ap-
proach strategy for this task. Although THOR-OP can tech-
nically walk forward through a door frame without touch-
ing it, we found it too hard to do, especially without good
situational awareness. Instead, side steps were chosen for
walking through the doors. We first tested with the robot
initially facing the door so that we could obtain a 3D repre-
sentation from the chest LIDAR. However, it took too much
time and effort for the robot to rotate by 90 degrees and
align to the center of the door frame. We eventually decided
to let the robot start sideways with respect to the door, and
slowly yet steadily take side steps to pass through the door.
The cameras on the hand and head were our primary sen-
sors. The hook, another passive end-effector that extended
from the gripper, was used to easily maneuver the door
handles without any stress to the gripper actuators.

Figure 18. THOR-OP used a hook to hold and rotate the handle for the door task. Almost 80 degrees was required to open the
door, which was unexpected and harder than our testing setup, which only required 60 degrees.
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The locomotion of our robot was quite stable during the
door task competition, in spite of many contacts with the
environment due to limited situational awareness. Walking
toward the first door, getting through it, and approaching
the second door took 2 m, 54 s; 4 m, 14 s; and 4 m, 15 s; respec-
tively; these were even better than our testing performance.
It took nearly 8 min to open the first door, which was much
longer than expected due to the nearly 80 degree angle as
opposed to the proposed 60 degree angle needed to rotate
the handle for opening the door, as shown in Figure 18. Be-
ing aware of this, the operator applied more rotation on the
handle for the second door and used just 3 min to open it.

Unfortunately, there were strong winds on the first day
of the DRC Trials, which impeded our progress but also
portrayed our full body balancing and stable walk. The
THOR-OP had to open the second door three times since
the wind kept pulling back and shutting the door. Since we
used a passive mechanism, we avoided any damage to our
gripper that might have occurred from the door hitting the
end-effector multiple times.

8.4. Wall Task

The most difficult part we found in preparing for the wall
task was to have a good grasp of the drill. Since the gripper
was designed specifically for the DeWalt drill used in the
DRC Trials with a contour perfectly fitting the drill, we had
to precisely direct it to a good position for grasping. Failing
to do so resulted in an undesired grasp of the power tool
and an increase in the load on the fingers. It required lots
of practice for the operator to realize the optimal approach
of the body and gripper to pick up the drill. Therefore, we
added fiducial markers on the 3D representation. We also
utilized audio feedback to relay back to the human operator
that the tool was triggered.

During the DRC Trials, we successfully approached the
table with the drills on it, and we carefully lined up and
gripped the drill successfully, as is seen in Figure 19. As
expected, 7 min was spent on the approach and fine adjust-
ment of the body pose. After the first attempt at the drill,
our operator decided to reapproach for a better body po-
sition. Therefore, a second sequence of walking commands
was executed with the arm withdrawn. Another 4 min was
spent aligning the gripper to a good position for holding and
triggering, which was faster than the average performance
from our testing.

However, as the robot started moving toward the wall,
the rubber sole under its feet started to peel off, resulting in
unstable walking. This did not happen in our practice since
the floor where we tested had a much smoother surface than
the one at the trials. This incident confirmed our concern
that the glued rubber was not an ideal solution for more
stable and reliable walking. Also, the belay on top of the
robot was too short to allow for comfortable side stepping,
and this made the robot fall when it tried to approach the

Figure 19. THOR-OP successfully approached to the table and
got grasp of the drill. The upper finger was actually pressing
the trigger of the drill at the moment shown in the figure.

wall to cut the predefined triangular path on the half-inch
dry wall.

8.5. Hose Task

For the hose task, the robot needed to perform three
sequential tasks: pick up the hose end, drag and lift it to
touch the wye, and screw the hose end to the wye thread.
There were two main challenges in this task: to drag the
hose without losing balance while walking, and to align the
hose end perfectly to the wye thread in order to screw it in.

During experimental tests, we found that pulling the
hose along the side of the robot affected the robot walk-
ing much more than pulling from the back. To handle this
problem, we made a specific arm posture that placed the
hand with the hose behind the robot close to the robot’s
center of mass, so that the robot was always pulled from
behind.

At the DRC Trials, THOR-OP was able to deliver a sta-
ble and reliable walk while holding the hose. Unfortunately,
just a few centimeters away from scoring our second point,
the power cable to the left wrist actuator became unplugged.
This disconnect meant the gripper went limp and out of po-
sition, precluding the robot from touching the wye with the
hose, shown in Figure 20. From inspection, the cable got
caught on the forearm when the gripper performed a large
amount of rotation. We have henceforth replaced those ca-
bles with longer ones and reduced risky maneuvers in arm
movements. It is important to stress that the clever four-bar
linkage mechanism of the gripper prevented the hose from
falling out even when there was no power to the fingers.

8.6. Debris Task

The debris task required the robot to clear a hallway by
removing a number of wooden pieces. One of the main
differences between the debris task and other manipulation
tasks was that the locations of the target objects were low
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Figure 20. THOR-OP was almost there to touch the wye with the hose head and score the second point when the power cable for
the left wrist popped out. The forearm drooped down but the gripper was able to keep a good grip of the hose.

with respect to the robot, so in order for the gripper to reach
the object, we could not use the default standing posture as
we used for other tasks.

We experimented with a variety of ways for the robot
to reach down further, including kneeling down fully, low-
ering the body height by bending the knees more, and
changing the torso pitch angle. We found that fully kneeling
down or extensive knee bending put too much load on the
knee actuators, and the robot could not walk normally with
such a posture. On the other hand, we could increase the
pelvis angle and the waist pitch angle to enable the robot
to reach all the objects, while maintaining the locomotion
capability.

During the preparation before we set out to perform
the debris task, we tried to make the robot bend down to
pick up a piece of debris five inches above the ground. This
motion jammed one of the power connectors in the torso
and shorted it out, causing the robot to collapse. We had to
withdraw from this task due to this hardware issue.

8.7. Terrain Task

Our goal for the terrain task was to score one point, which
requires traversing the pitch ramps and chevron hurdle of
cinder blocks. During testing, we could reliably score the
initial point in time. It was crucial for THOR-OP to precisely
align the feet at proper distances to the ramp ridge or the
edge of the hurdle, so that the robot would not fall or kick
the cinder block. This process took most of the time spent
for the task.

On competition day, one of the actuators on the left leg
was broken during a test run just a few minutes before the
terrain task. We managed to replace it but no time was left
to bias the actuator, which affected the locomotion stability
and reliability. THOR-OP successfully traversed the ramp,
but an intervention was called since the robot lost balance
when taking a huge step over the ramp. After the interven-
tion, the operator was more cautious and spent more time,

Figure 21. THOR-OP taking a step on the cinder blocks.

nearly 10 min, on positioning the robot to ensure a good
position for stepping on and off the hurdle. THOP-OP suc-
ceeded in stepping onto the hurdle, as depicted by Figure
21, but time ran out before the robot stepped off.

8.8. Ladder Task

To obtain at least one point in the ladder task, the robot
needed to climb onto the first rung of the ladder and all
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Figure 22. THOR-OP successfully scored a point in the ladder
task.

points of the robot body must be off the ground. Due to
the limited development time and hardware capability, we
barely tested the ladder task before the DRC Trials. We still
attempted the task and scored one point.

The camera on the head was used for perceiving the
environment and monitoring the locomotion status. The
THOR-OP approached the ladder and clung to the third
rung with both arms, leaving the whole body leaning
against the ladder. With both knees supported by the first
rung and the gripper holding the ladder tightly, the robot
then lifted both feet off the ground and scored, shown in
Figure 22.

9. SUMMARY

THOR-OP has a number of distinct features from other
robots in tracks A and B—it is fully modular, lightweight,
and affordable. These attributes are desirable for immedi-
ate disaster response. During the DRC Trials, we proved
that the THOR-OP robot, although being lightweight and
compact, is capable of many practical disaster-response
tasks.

For the software, we preferred a simple, conservative,
and human-in-the-loop approach for a number of reasons.
Our hardware was still at the prototype stage, and we had a
tight development schedule and limited robot hours before

the competition. Also, as we were allocated a long time for
each task (30 min), the cost of possible failure greatly out-
weighed any performance gain we might achieve. For the
upcoming DRC Finals, we may have a much shorter time to
complete each task. This will emphasize more autonomous
behavior of the robot, more optimized motion planning, and
utilizing the maximum performance of the hardware.

Our remote operator console provided robust accom-
modation of the poor network, but we did not take advan-
tage of good network situations as much as we could have.
Being able to adapt to network conditions autonomously
would help to give the user a more fluid experience in the
best cases, possibly allowing for significant performance
gains. THOR-OP is officially a finalist for the DRC Finals,
and we hope that the rich experience from the DRC Trials
will enable us to perform well. Having established a capa-
ble hardware and software platform, we are preparing to
improve and test for the finals.

This article has provided a detailed description of Team
THOR’s algorithms and technical approaches to the 2013
DARPA Robotics Challenge Trials. To handle the great chal-
lenge of developing a bipedal disaster-response robot from
scratch, we focused heavily on modularity of both hard-
ware and software structures. Important benefits included
the rapid field repairability of the robot, as well as the low
development and manufacturing costs—all vital aspects for
any robotic approach to disaster response. The DRC Trials
results show that our hardware and software comprise a
capable platform. Our future work will focus on provid-
ing more robot autonomy, incorporating the full dynamic
properties of the robot for motion planning and balanc-
ing, and adding more analysis of high-dimensional sensor
feeds.
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