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Visualization of the Contact Force
Solution Space for Multi-Limbed
Robots
A new analytical method for determining, describing, and visualizing the solution space
for the contact force distribution of multi-limbed robots with three feet in contact with the
environment in three-dimensional space is presented. The foot contact forces are first
resolved into strategically defined foot contact force components to decouple them, and
then the static equilibrium equations are applied. Using the friction cone equation at
each foot contact point, the problem is then transformed into a geometrical one. Using
geometric properties of the friction cones and by simple manipulation of their conic
sections, the entire solution space which satisfies the static equilibrium and friction
constraints at each contact point can be found. Two representation schemes, the “force
space graph” and the “solution volume representation,” are developed for describing
and visualizing the solution space which gives an intuitive visual map of how well the
solution space is formed for the given conditions of the system.
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1 Introduction
This paper addresses the determination, representation, and vi-

sualization of the contact force solution space of a multi-limbed
mobile robotic system with three feet in contact with its environ-
ment. Since the limbs of the robot have enough joints and are
actively controlled, the contact forces at the feet need to be ex-
plicitly chosen to ensure that the robot does not lose its balance
and does not slip at a foot. One of the major difficulties associated
with finding the force distribution solution has been the indeter-
minate nature of the problem. Any system with three or more
contact points makes it an underspecified system involving redun-
dancy since there are more unknowns than the number of equa-
tions. The other major difficulty associated with the problem of
multi-contact force distribution has been the nonlinear nature of
the three-dimensional friction cone model.

Instead of finding just a single contact force solution through
optimization methods as is the case for most previous work on
this subject, the presented method describes all the possible solu-
tions �solution space� for the contact force distribution for a stati-
cally stable body under friction constraints. The optimal contact
force solution can then be chosen in this solution space which
maximizes the objectives given by the chosen optimization crite-
ria. This two-step approach allows one to have more options and
freedom in choosing the final solution and to satisfy other special
conditions that might be considered at that instant. This paper
presents the method for finding the solution space as the first step
of finding the optimal contact force distribution. The second step
of choosing the optimal solution in this solution space was pre-
sented in �1–3�.

2 Background and Previous Work

2.1 The Multi-Contact Force Distribution Problem. Since
a multi-limbed mobile robotic system has multiple contacts with
its environment, the contact forces required to support it and those
required by its tasks are indeterminate. This problem also arises in
the study of multi-fingered robotic hand grasping �4,5� and mul-
tiple cooperating robot arms with closed kinematic chains �6�. If
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the robot is supported by passively constrained legs, the statically
indeterminate force and moments at the foot contact points would
have to be determined by examining the flexibility of the contact
surface and the limbs. However, since the limbs of the robot have
enough joints and they are actively controlled, the components of
the contact forces need to be explicitly chosen which ensures that
the robot does not lose its balance and does not slip at a foot. Most
investigations for solving this multi-contact force distribution
problem so far have been done in the context of multi-fingered
robotic hands or multi-limbed walking machines and solutions
have been attempted by using many different optimization
methods.

For a multi-limbed robot to maintain a stable position on a
steep incline or on rough terrain, there are two key issues that
need to be considered: one is losing balance due to external forces
such as gravity, and the other is the slipping between the feet and
the surface. The first has to do with the force and moment balance
of the robot and the second has to do with the friction between
each foot and the surface. In other words, all the forces acting on
the robot including the foot contact forces should satisfy the static
equilibrium equations while at the same time, each foot contact
force should be in the friction cone at the contact point to avoid
slipping.

One major difficulty associated with this topic has been the
indeterminate nature of the problem. There are only six equations
for static equilibrium �three for the force balance and three for the
moment balance in three dimensions� while the number of un-
known forces is three times the number of contact points �assum-
ing a frictional point contact�, thus any system with three or more
contact points makes it an underspecified system involving redun-
dancy. Also, the nonlinear nature of the three-dimensional friction
cone model is another major difficulty associated with the multi-
contact force distribution problem.

We define the multi-contact force distribution problem for a
multi-limbed mobile robot with three feet contact as follows:
Given the locations of the three foot contact points on the surface
and their corresponding friction models, and the known external
load on the robot body, determine all the possible contact forces
that will balance the load �static equilibrium� and preclude slip at
any contact points �friction constraints�.

2.2 Previous Work. The force distribution problem for multi-

limbed robotic vehicles is a statically indeterminate problem for-
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mulated by a set of equality constraints �static force moment equi-
librium equations� and a set of nonlinear inequality constraints
�friction constraints�. The goal is to find the solution that satisfies
these constraints and maximizes the objectives given by the opti-
mization criteria.

Most previous work in this area proposed using the pseudo-
inverse �7,8� together with various optimization techniques for
finding a solution for a problem formulated as a constrained, op-
timization problem using specific objective functions �9–17�. The
problem is then solved by linearizing the friction cone constraints
first and then applying various linear programming techniques.
These approaches were also used for multi-fingered robotic hand
grasping �14,18,19� and multiple robot manipulators working to-
gether. However, these methods were often too slow for real time
computation and were limited in many ways. There were also
attempts to find a suboptimal solution more quickly to make it fast
enough for real time computation �19,20�. More recent work �21�
includes analyzing and synthesizing grasps in a constraint of com-
bined elasticity and geometric compatibility. In addition to the
force equilibrium condition Ref. �22� presents a searching method
for finding a form-closures grasp, and Ref. �23� presents a numeri-
cal test for force and form closure for a given grasp.

Unlike other methods previously developed where a single so-
lution to a constrained optimization problem is immediately found
from maximizing an objective function�s� under constraints, Hong
and Cipra �24� introduced a two-step approach in solving the
multi-contact force distribution problem. First, the entire solution
space that satisfies all constraints is found �finding the solution
space�, and then a solution in that space which will give the best
results for the objectives given by the chosen optimization criteria
is chosen as its optimal solution �choosing the optimal solution�.
Finding the description of the entire solution space first provides
an intuitive visual map of how well the solution space is formed
for the given conditions of the system. This is very important and
can be useful to the higher-level motion planner for deciding on
potential foot placement locations on the surface or for choosing
the internal configuration of the robot �posture� when moving.
Choosing a solution in the solution space will give insight into the
quality of that chosen solution and provide a measure of robust-
ness against disturbances, thus will allow us to choose the “best”
solution for the situation.

In �24�, the method developed was applicable only to a climb-
ing tethered mobile robot with a single cable and two feet contact.
In this paper we present a more general method for representing
and visualizing the contact force solution space for multi-limbed
mobile robots with three feet contact as the first step in finding the
optimal contact force distribution solution. The methods for both
cases are similar in concept, but the method presented in this
paper for the three feet contact case is more general and thus can
also be used for finding the optimal force distribution for the one
cable-two feet contact case as well.

3 Determining, Describing, and Visualizing the Solu-
tion Space

3.1 Overview of the Method. The overall strategy for finding
and describing the contact force solution space is similar to that
for the “one cable-two feet contact case” �24�; however, the entire
solution space which satisfies the static equilibrium and friction
constraints at each contact point is described in terms of three
parameters instead of one, and thus the strategy for finding the
description of the solution space is more complex.

The foot contact forces are first resolved into strategically de-
fined foot contact force components to decouple them for simpli-
fying the solution process, and then the static equilibrium equa-
tions are applied to find certain contact force components and the
relationship between the others. Using the friction cone equation
at each foot contact point and the known contact force compo-
nents, the problem is transformed into a geometrical one to find

the ranges of contact forces and the relationship between them
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that satisfy the friction constraint. Using geometric properties of
the friction cones and by simple manipulation of their conic sec-
tions, the entire solution space which satisfies the static equilib-
rium and friction constraints at each contact point can be found.

The “force space graph” and the “solution volume representa-
tion” schemes are developed for describing and visualizing the
solution space which gives an intuitive visual map of how well the
solution space is formed for the given conditions of the system.
These can be used as tools for choosing the final optimal solution
in its solution space as presented in �1–3�.

3.2 Assumptions and the Mobile Robotic System. The
multi-limbed mobile robotic system under consideration is as-
sumed to move in a quasi-static manner, by stably supporting
itself against the environment surfaces using its three feet, moving
a free limb to a new position and setting it down while lifting a
foot that was in contact with the surface, and then slowly chang-
ing its internal configuration to a new posture. The “three feet
contact” implies that there are only three feet in contact with the
surface at a given time, and thus does not mean that the robot only
has three feet.

The following describes assumptions made for the robotic sys-
tem under consideration:

�a� We assume that the mechanism of each leg has enough
degrees of freedom and the joints have large enough joint
torque limits such that each foot can exert a force to the
surface in any direction at any magnitude.

�b� We treat all external forces and moments acting on the
robot �except for those from the feet contact points� as
known forces including gravity, wind loads, or wrenches
acting on the robot during manipulation tasks, etc. and
represent them by a single force and a moment acting on
a point on the body.

�c� We assume that the contact at the foot follows the “point
contact with friction” model �Salisbury �5�� where only a
normal force and a tangential force are acting on the con-
tact point, as opposed to the “soft finger contact” model
�25� where the contact point is also subjected to a mo-
ment about the normal.

�d� We assume the robot moves in a quasi-static manner.
�e� We do not consider the degenerate case of when all three

contact points are located on a straight line.

Only the computation of the possible contact forces is of con-
cern in this work, and the effects of leg stiffness and the problem
of controlling the force and compliance are not in the scope of this
method.

3.3 The Unit Contact Force Component Vectors and the
Force System. We first define vectors and coordinate frames as
shown in Fig. 1. The O-XYZ body coordinate frame is attached to
an arbitrary point at an arbitrary orientation on the body; however,
it is convenient to attach it at the center of gravity of the body. The
vectors rCi �i=1,2 ,3� are the position vectors for the three foot
contact points C1, C2, and C3 from the origin of the body coordi-
nate frame O. At each foot contact point, the foot contact coordi-
nate frame is defined using three of the following four unit contact
force component vectors e�, e�, e�, and e�.

The unit direction vector pointing from C1 to C2 is defined as
the unit contact force component vector e�, the unit direction vec-
tor pointing from C2 to C3 is defined as the unit contact force
component vector e�, and the unit direction vector pointing from
C3 to C1 is defined as the unit contact force component vector e�.
That is,

e� = �rC2 − rC1�/�rC2 − rC1� �1�
e� = �rC3 − rC2�/�rC3 − rC2� �2�
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e� = �rC1 − rC3�/�rC1 − rC3� �3�

The unit contact force component vector e� is defined to be per-
pendicular to the foot contact plane �the plane defined by the three
contact points C1, C2 and C3� following the right hand coordinate
rule as shown in Fig. 1. Thus,

e� = �e� � e��/�e� � e�� �4�

These four unit contact force component vectors e�, e�, e�, and
e� are then arranged as shown in Fig. 1 to form the three foot
contact coordinate frames used for describing the foot contact
forces at each foot contact point. Note that these are not orthogo-
nal coordinate frames. Resolving the foot contact forces into these
newly defined contact force components, instead of using the
usual X-Y-Z Cartesian coordinates, decouples the foot contact
forces to enable finding certain force components directly, and
helps express the relationship of these force components between
each contact point.

At each contact point C1, C2, and C3, the contact surface nor-
mal directions are represented by the unit surface normal direction
vectors uN1, uN2, and uN3, and the friction cones at these contact
points are defined using these unit surface normal direction vec-
tors together with their corresponding friction coefficients �C1,
�C2, and �C3 as shown in Fig. 2.

The system of all the external forces and moments due to grav-
ity or any wrenches from interaction with the environment, etc. is

represented by a known force F̄O and a known moment M̄O acting
on the origin of the body coordinate frame O. The foot contact

forces F̄C1, F̄C2, and F̄C3 at points C1, C2, and C3 are shown in
their components FC1�, FC1�, FC1� and FC2�, FC2�, FC2� and
FC3�, FC3�, FC3�, respectively.

For the robot to be in static balance, all of these forces shown in
Fig. 2 must satisfy the static force moment equilibrium equations.

In addition to this, the foot contact forces F̄C1, F̄C2, and F̄C3 must
be in their friction cones for the feet not to slip.

3.4 Applying the Static Equilibrium Equations. To find the
solution space for the force distribution problem is to find all
possible combinations of the foot contact forces at each foot con-
tact point that satisfy the static force moment balance equations
and the friction constraints at each foot contact point. Since there
are only six equations for the static equilibrium condition but
there are nine unknown force components �three components for
each of the three contact points� not all force components can be

Fig. 1 The coordinate system
directly solved for. However, by resolving each foot contact force
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into the strategically defined foot contact coordinate frame com-
ponents, we can directly find three of them �FC1�, FC2�, and FC3��
using three of the static equilibrium equations.

FC1�, the e� component foot contact force at C1, can be found
by summing the moments about e� going through C2 and C3, and
solving

e� · ��rC1 − rC2� � F̄C1� + �− rC2� � F̄O + M̄O� = 0 �5�

FC2�, the e� component foot contact force at C2, can be found by
summing the moments about e� going through C3 and C1, and
solving

e� · ��rC2 − rC3� � F̄C2� + �− rC3� � F̄O + M̄O� = 0 �6�

FC3�, the e� component foot contact force at C3, can be found by
summing the moments about e� going through C1 and C2, and
solving

e� · ��rC3 − rC1� � F̄C3� + �− rC1� � F̄O + M̄O� = 0 �7�

The remaining six force components FC1�, FC2�, FC2�, FC3�,
FC3�, and FC1� cannot be found explicitly at this time due to the
indeterminate nature. However, by summing the moments about
e� at each three contact points C3, C1, and C2 we can obtain three
relationship equations between them as

e� · ��rC1 − rC3� � �F̄C1� + F̄C2�� + �− rC3� � F̄O + M̄O� = 0 �8�

which is in the form of FC1�+FC2�=Constant1, and

e� · ��rC2 − rC1� � �F̄C2� + F̄C3�� + �− rC1� � F̄O + M̄O� = 0 �9�

which is in the form of FC2�+FC3�=Constant2 and

e� · ��rC3 − rC2� � �F̄C3� + F̄C1�� + �− rC2� � F̄O + M̄O� = 0

�10�

which is in the form of FC3�+FC1�=Constant3.
Note that the six equations used are not in the form of three

sums of the forces equations and three sums of the moments equa-
tions but are in the form of six sums of the moments equations as
shown. This is still valid as long as the six equations used form a
linearly independent set. Also, the foot contact forces have to be
in compression since unlike a cable �24� the feet cannot exert
force to the ground through tension. Future work will include
extending this method for dry adhesive feet �gecko feet �26��
which can apply forces to the ground in all directions.

To illustrate the procedure, a robotic system with three feet in

Fig. 2 The force system
contact with the surface will be used as an example. The param-
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eters used to define this example system and the numbers pre-
sented here as results could assume any units as long as they have
the correct dimensions corresponding to its type �force or length�.
Position vectors for the three foot contact points C1, C2, and C3
expressed in, and from the origin of the body coordinate frame are
given as

r̄C1 = �4.0,4.0,− 3.9�

r̄C2 = �− 4.0,4.1,− 4.0� �11�

r̄C3 = �0.0,− 4.0,− 4.1�

and at each foot contact point C1, C2, and C3, the foot contact
coordinate frames are set following the rules defined using the
four unit contact force component vectors e�, e�, e�, and e� as
shown to scale in Fig. 3. The unit surface normal direction vectors
uN1, uN2, and uN3 are given as

ūN1 = �− 0.577,− 0.577,0.577�

ūN2 = �0.667,− 0.333,0.667� �12�

ūN3 = �0.000,0.707,0.707�

and their corresponding friction coefficients �C1, �C2, and �C3 are

�C1 = 0.2, �C2 = 0.32, �C3 = 0.15 �13�

The known external force F̄O and the known external moment M̄O
expressed in the body coordinate frame and acting on the origin O
are

F̄O = �0.0,0.1,− 8.0�, M̄O = �2.0,0.1,0.0� �14�

This example system is represented to scale in Fig. 3 with the
friction cones shown at each contact point.

Now we use this example system to illustrate the process of
applying the static equilibrium constraints. First, we can directly
solve for the three force components using the strategy illustrated
above. The FC1�, FC2�, and FC3� component forces by summing

Fig. 3 The example system
the moments about e�, e�, and e�, and their magnitudes are then
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FC1� = 1.901, FC2� = 1.876, FC3� = 4.223 �15�

The relationship between the force components FC1� and FC2�,
FC2� and FC3�, and FC3� and FC1� are obtained by summing the
moments about e� at the three contact points C1, C2, and C3 as

FC1� + FC2� = − 0.048 �16�

FC2� + FC3� = 0.033 �17�

FC3� + FC1� = 0.088 �18�
Using the six static force moment balance equations, we have

now found three force components and three relationships be-
tween the other six unknown force components. These values and
relationships satisfy the static equilibrium conditions whether or
not they satisfy the friction constraints.

3.5 Applying the Friction Cone Constraints. For the feet
not to slip, the contact force at each contact point should also
satisfy the friction constraints. Using the three force components
found and the three relationship equations together with the fric-
tion constraints at each contact point, the remaining foot contact
force components can be expressed in terms of three parameters
with given ranges. The value of these three parameters can be
chosen later to optimize the foot contact forces using the chosen
optimization criteria.

Using the unit surface normal direction vectors uN1, uN2, and
uN3 together with their corresponding friction coefficients �C1,
�C2, and �C3, the equation for the friction cones at these contact
points are defined in terms of their foot contact coordinate axes.
Using these friction cone equations, the friction constraints at each
foot contact point can then be represented as

ConeC1�FC1�,FC1�,FC1�� � 0 �19�

ConeC2�FC2�,FC2�,FC2�� � 0 �20�

ConeC3�FC3�,FC3�,FC3�� � 0 �21�

meaning that each foot contact force must be inside their respec-
tive friction cone.

Substituting the three known force component values �FC1�,
FC2�, and FC3�� in these quadratic friction constraint inequality
equations, we now have three quadratic inequality equations with
two variables each �FC1�, FC1� and FC2�, FC2� and FC3�, FC3�� as

EC1
# �FC1�,FC1�� � 0 �22�

EC2
# �FC2�,FC2�� � 0 �23�

EC3
# �FC3�,FC3�� � 0 �24�

Geometrically, this strategy is illustrated in Fig. 4 for contact
point C1. The cross section of the friction cone �Fig. 4�a�� sliced
by the force plane �Fig. 4�b��, which is defined by the known force
component FC1� and is parallel to the e�-e� plane, is shown in Fig.
4�c�. This cross section area as shown in Fig. 4�d� represents the
FC1�-FC1� plane region that satisfies the friction constraint for that
contact point. Note that this cross section is a conic section which
can be either an ellipse, parabola, hyperbola, circle, line, two non-
parallel lines, or a point depending on how the force plane slices
the friction cone �Fig. 5�. This geometric property will be utilized
later in the process of finding the optimal solution as presented in
�1–3�.

Now we have three quadratic friction constraint inequality
equations, with a total of six force component variables �FC1�,
FC1�, FC2�, FC2�, FC3�, and FC3�� in the form of three conic
section inequality equations. By applying the three linear relation-
ships for FC1� and FC2�, for FC2� and FC3�, and for FC3� and
FC1� from Eqs. �8�–�10�, we can represent the solution space us-
ing only three force component variables. Substituting one vari-

able each �FC1�, FC2�, and FC3�� in the three conic section in-
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equality Eqs. �22�–�24� with those from the three linear
relationships and eliminating them, we now have a new set of
three conic section inequality equations with two variables each,
but a total of only three force component variables �FC1�, FC2�,
FC3�� as

EC1�FC3�,FC1�� � 0 �25�

EC2�FC1�,FC2�� � 0 �26�

Fig. 4 Geometric interpretation o
Fig. 5 Examples of conic sections
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EC3�FC2�,FC3�� � 0 �27�

This process can be better understood geometrically as flipping
and shifting each conic section about an axis �a simple linear
transformation� as will be shown in the following example.

Now any set of force components �FC1�, FC2�, and FC3�� that
satisfy this set of three equations is a solution that satisfies the
static equilibrium and friction constraints.

To illustrate this process, we apply this strategy to the example
system. Using the unit surface normal direction vectors uN1, uN2,
and uN3 together with their corresponding friction coefficients
�C1, �C2, and �C3, the equation for the friction cones and their
friction constraint equations can be found as

ConeC1�FC1�,FC1�,FC1�� = 0.397FC1�
2 + 0.671FC1�

2 + 0.631FC1�
2

+ 0.019FC1�FC1� − 0.697FC1�FC1�

+ 0.943FC1�FC1� � 0 �28�

ConeC2�FC2�,FC2�,FC2�� = 0.492FC2�
2 + 0.621FC2�

2 + 0.514FC2�
2

− 0.029FC2�FC2� − 0.859FC2�FC2�

+ 0.994FC2�FC2� � 0 �29�

ConeC3�FC3�,FC3�,FC3�� = 0.579FC3�
2 + 0.571FC3�

2 + 0.508FC3�
2

− 0.357FC3�FC3� − 0.919FC3�FC3�

+ 0.911FC3�FC3� � 0 �30�

These friction cones are shown to scale in Figs. 3 and 6. Substi-
tuting FC1�, FC2�, and FC3� with the values already found �Eqs.

nding the range of FC1� and FC1�
f fi
�15��, we now have three friction constraint equations with two
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variables each in the form of conic section inequality equations as

EC1
# �FC1�,FC1�� = 0.397FC1�

2 + 0.671FC1�
2 + 0.019FC1�FC1�

− 1.325FC1� + 1.792FC1� + 2.282 � 0 �31�

EC2
# �FC2�,FC2�� = 0.492FC2�

2 + 0.621FC2�
2 − 0.029FC2�FC2�

+ 1.866FC2� − 1.612FC2� + 1.808 � 0 �32�

EC3
# �FC3�,FC3�� = 0.579FC3�

2 + 0.571FC3�
2 − 0.357FC3�FC3�

+ 3.845FC3� − 3.883FC3� + 9.057 � 0 �33�

Geometrically, this can be understood as finding the cross section
regions of the friction cones sliced by the force planes which are
defined by the known force components �FC1�, FC2�, and FC3��
that are parallel to the foot contact plane as shown in Fig. 6.
Figure 7 shows the foot contact plane with these cross sections
projected onto it. Each of these three conic section regions repre-
sents the region of the two force components which satisfy the
friction constraint for their contact point.

To eliminate three variables from the three conic section in-
equality equations with six force component variables �Eqs.
�31�–�33��, the three linear relationships �Eqs. �16�–�18�� are ap-
plied to each of them to obtain a new set of three conic section
inequality equations with two variables each, but a total of only
three force component variables FC1�, FC2�, and FC3�. Geometri-
cally, this process can be understood as applying simple linear
transformations �Eqs. �16�–�18�� to the conic section regions �EC1

# ,
EC2

# , and EC3
# � to transform each of them to new regions �EC1, EC2,

and EC3� as shown in the transformation from Fig. 7 to Fig. 8.
This transformation involves flipping and shifting of the conic
sections in their nonorthogonal coordinate frames.

Applying the transformation given as the linear relationship Eq.
�16� to the original conic section inequality equation EC1

# as shown
in Eq. �31�, the new conic section inequality equation EC1 is ob-
tained as

EC1�FC3�,FC1�� = 0.397FC3�
2 + 0.671FC1�

2 − 0.019FC3�FC1�

− 1.863FC3� − 1.323FC1� + 2.443 � 0 �34�

and applying the transformation Eq. �17� to EC2
# as shown in Eq.

Fig. 6 Three friction cones sliced by their force planes
�32�, the new conic section inequality equation EC2 is obtained as
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EC2�FC1�,FC2�� = 0.492FC1�
2 + 0.621FC2�

2 + 0.029FC1�FC2�

− 1.818FC1� − 1.610FC2� + 1.719 � 0 �35�

and finally, applying the transformation Eq. �18� to EC3
# as shown

in Eq. �33�, the new conic section inequality equation EC3 is ob-
tained as

EC3�FC2�,FC3�� = 0.579FC2�
2 + 0.571FC3�

2 + 0.357FC2�FC3�

− 3.883FC2� − 3.895FC3� + 9.184 � 0 �36�

Fig. 7 Projection of the cross section regions onto the foot
contact plane
Fig. 8 Transformation of the projected cross section regions
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Now we have a new set of three conic section inequality equa-
tions �EC1, EC2, and EC3� with a total of only three force compo-
nent variables FC1�, FC2�, and FC3�. Any set of forces that satisfy
these newly formulated conic section inequality equations will
satisfy all sets of static equilibrium and friction constraints.

3.6 Defining the Solution Space. Now that we have reduced
the problem into a set of three quadratic inequality equations with
three variables �FC1�, FC2�, and FC3��, any set of forces that sat-
isfy this set of three constraints is defined as the solution space.
One way of representing this solution space graphically is to
gather all three non orthogonal contact point coordinate axes on
the foot contact plane such that all three contact points coincide at
a single point as shown in Fig. 9. This representation helps to
visualize the three quadratic inequality constraints and the solu-
tion space that satisfies them, and will also be used as a tool for
choosing a solution in the solution space. We will call this repre-
sentation the “force space graph.”

Figure 10�a� shows an example of a set of three contact force
components FC1�, FC2�, and FC3� on the force space graph as a
valid solution where point P1, P2, and P3 defined by these three
contact force components are in each of their transformed conic
sections, thus satisfying all constraints. Figure 10�b� shows an

Fig. 9 The force space graph representation

Fig. 10 Valid/invalid solution on the force s

solution „slip at C1….
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example of an invalid solution on the force space graph where
point P1 is not inside its transformed conic section
EC1�FC3� ,FC1�� and thus will slip at contact point C1.

Another way of representing the solution space graphically is
by defining it as the volume created by the intersection of the
projections of the three conic sections in three-dimensional space
as shown in Fig. 11. We will call this representation the “solution
volume.” Any point defined by the three contact force components
that is in this solution volume is a solution that satisfies all static
equilibrium and friction constraints. The three conic sections used
in generating the solution volume are from the same set of three
conic section inequality equations EC1, EC2, and EC3 �Eqs.
�34�–�36��; however, since they are plotted on a three axis or-
thogonal system instead of on the nonorthogonal system used in
the force space graph representation, the shapes of these conic
sections are different from those in the force space graph
representation.

The projection of the solution volume onto each plane describes
the region of all possible solution points in each transformed conic
section as shown in Fig. 11�b�. The wider this region is for a
transformed conic section the better the corresponding foot con-
tact point, since this means that there are more choices for select-
ing a foot contact force for that particular foot. The shape and size
of the solution volume and its projections onto each plane can
provide useful information on the quality of the solution space for
its particular system.

These two representations of the solution space �the force space
graph and the solution volume representation� will give a better
insight into the complex force interactions visually, help in choos-
ing the optimal solution, and help see the quality of the chosen
solution.

Using the strategy presented, we now have a representation of
all the combinations of the force distributions possible that satisfy
all static equilibrium and friction constraints as the entire solution
space. Among the nine unknown force components, three of them
are explicitly specified �FC1�, FC2�, and FC3��, another three com-
ponents �FC1�, FC2�, and FC3�� are given as possible ranges and
constraints by three quadratic inequality equations �Eqs.
�25�–�27�� represented by the force space graph or the solution
volume, and the last three components �FC1�, FC2�, and FC3�� are
given as linear relationships to the other components �Eqs.
�8�–�10��. Now choosing a solution set is a matter of specifying
the three contact force components variables FC1�, FC2�, and FC3�

that satisfy the three quadratic inequality equations using the cho-
sen criteria as shown in �1–3�.

e graph. „a… A valid solution; „b… An invalid
pac
JANUARY 2006, Vol. 128 / 301

5 Terms of Use: http://asme.org/terms



Downloaded F
4 Summary and Conclusion
In this paper, we have presented a method for finding the de-

scription of the contact force solution space and ways to visualize
it for the three feet contact case with a simple example. Geometric
properties of the friction cone and its conic section were used to
find the solution space, and two representation schemes, the force
space graph and the solution volume representation, were devel-
oped to describe the solution space and to be used as a visualiza-
tion tool. Discussions for the geometric interpretation to the pro-
cedure and results were presented using an example to visually
provide insight for the physical meanings of the parameters in-
volved. The final solution may be chosen in this solution space
using these representation schemes by selecting the values for the
three parameters that define the solution using an appropriate cri-
teria �1–3�. The strategy developed could be used for grasp plan-
ning of multi-fingered robotic hands as well.

Future research areas may include developing methods for sys-
tems with four elements: a method for the “two cable-two feet
contact case” where the solution is described with two parameters,
and for the “four feet contact case” where the solution is described
with six parameters would be a natural extension to the current
methods developed.
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