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ABSTRACT 
The Whole Skin Locomotion (WSL) robotic platform is a 

novel biologically inspired robot that uses a fundamentally 
different locomotion strategy than other robots. Its motion is 
similar to the cytoplasmic streaming action seen in single 
celled organisms such as the amoeba. The robot is composed of 
a closed volume, fluid filled skin which generally takes the 
shape of an elongated torus. When in motion the outer skin is 
used as the traction surface. It is actuated by embedded smart 
material rings which undergo cyclical contractions and 
relaxations, generating an everting motion in the torroidially 
shaped skin. To better understand, design, and optimize this 
mechanism, it is necessary to have a model of the skin, fluid, 
and actuators and their interactions with the environment. This 
paper details the first steps in the development of a non-linear 
finite element (FE) model which will allow us to study these 
interactions and predict the shape and motion of the robot 
under various actuation strategies. A simple membrane element 
model is introduced from literature and is modified such that 
an incremental loading strategy can be employed. Finally, an 
underlying physical mechanism is introduced which could 
possibly describe the relationship between the shape of and 
pressure within the membrane skin and motion of the whole 
skin locomotion robot. 
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1 INTRODUCTION 

1.1 Background  
The Whole Skin Locomotion (WSL) robotic platform [1] is 

a novel biologically inspired robot that uses a locomotion 
strategy analogous to the cytoplasmic streaming motion seen in 
single celled organism. The body of the WSL mechanism 
consists of a toroid shaped skin filled with liquid.  The fluid 
filled toroid model is like that of a common child's toy that is 
often referred to as a “water worm.”  When the robot is in 
motion, the outer skin is used as the traction surface, propelling 
the robot in relation to its environment.  Upon reaching the aft 
end of the robot, the skin everts, and travels through the center 
of the robot to the stern.  At this point the skin exits the center 
of the robot and returns to the outside where the cycle begins 
again.   

This transportation mechanism is inspired by the way some 
single celled amoeboid organisms move, such as the Amoeba 
proteus (giant amoeba) or Chaos chaos. The motion of these 
organisms is generated by a process of liquid to solid and solid 
to liquid transformation of the organisms body itself which is 
called cytoplasmic streaming.  In this process, the liquid 
endoplasm flows inside the ectoplasmic tube and transforms 
into the gel-like ectoplasm outer skin at the front.  The 
ectoplasm outer skin at the end transforms back into the liquid 
form endoplasm at the rear. The net effect of this continuous 
ectoplasm-endoplasm transformation is the forward motion of 
the amoeba [2]. 

The technology to implement a similar transformation on 
any scale does not yet exist.  Instead, the WSL uses the everting 
motion described earlier, in which the outer skin turns itself 
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inside out and returns to the front of the robot through the robot 
center. Therefore the robot is necessarily torroidially shaped 
and can be thought of as a three dimensional tank tread. By 
turning itself inside out in a single continuous motion, the 
overall motion of the cytoplasmic streaming ectoplasmic tube 
in amoebae can be replicated as illustrated in Figure 1. 

 
1.2  Motion Generation Mechanism 
The motion of the torus shaped skin is generated by the 

contraction and expansion of actuation rings embedded in the 
skin. There are currently two methods being considered for this 
application.  On a large scale, larger than .1[m], accordion like 
pneumatic rings embedded in the skin which expand and 
contract with changes in pressure can be utilized [2].  This 
method can deliver both the high strains and forces that would 
be necessary to generate motion in the WSL robot.  On a small 
scale, rings of electroactive polymers (EAP) would be placed 
around the circumference of the toroid to drive the motion.  
Because EAPs cannot generate both large displacements and 
forces, these materials are limited to small scale 
implementations.  At this point, the focus of the research is on 
the smaller scale designs, and from here on only the EAP 
actuators will be considered. 

As was stated earlier, this robot is fluid filled, and therefore 
its shape and motion are determined by the fluid pressure, the 
tension in the skin, and the force generated by the actuators 
embedded in the skin.  For example, from rudimentary 
experiments with the “water worm” toy, we would expect that a 
generally contractile force generated by these EAP strips at the 
rear of the robot to cause this end to taper down and generate a 
forwards motion.   

 
 

 
Figure 1. Everting motion of the WSL robot.  Note that the 
solid tube pictured has been replaced with fluid in current 

design iterations. [2] 
 

 

loaded From: http://proceedings.asmedigitalcollection.asme.org/ on 05/02/2015 Te
At this point though, we have no way to quantify this 
motion or the shape generated by the internal forces.  Stated 
differently, the interactions between the skin, fluid, ground, and 
actuators are not well understood.  Therefore we are not able to 
predict the shape or motion of this robot when the EAP strips 
are actuated. It is then of course difficult to control, let alone 
design the robot.  This is the driving force behind the research 
to develop a finite element model which can incorporate the 
statics and dynamics of the hyper-elastic skin, fluid filled 
interior, and the smart material actuators.  It is also hoped that 
the development of the FEA model will give us some insight 
into the underlying mechanisms within the skin and fluid that 
generate this motion.   

The goal of this research project is to have a model to 
which we can apply actuator forces and predict the resulting 
shape and motion of the robot.  This paper details several 
objectives of the research, which were as follows:  1) gain an 
understanding of finite element models used for membrane 
surfaces; 2) implement a suitable model in Matlab® with an 
appropriate loading strategy; 3) find the final shape of the robot 
and predict its motion; 4) introduce an analytical solution and 
compare it to the FEA results to gain insight into the 
fundamental mechanisms that propel this robot.  

Developing our own FEA code will allow us to have more 
control to enforce volume constraints, implement buckling 
models, and develop our own elements.  We also hope to gain a 
fundamental understanding of the mechanics of the WSL robot 
that would otherwise not be possible. Thirdly, we can 
corroborate our results with commercial software, further 
validating the model.     

 
 

2 MEMBRANE BASED FINITE ELEMENTS 
Finite element methods are numerical procedures to obtain 

solutions to complex engineering problems [3].  They are 
particularly useful when modeling complex phenomenon 
and/or complex geometries where analytical models are 
cumbersome and difficult.   As mentioned earlier, of particular 
interest to us is the interaction of the membrane with the 
actuators, fluid interior, and ground.  Therefore at this point, 
only the membrane is modeled, and the other bodies which 
dynamically interact with the membrane are modeled as 
prescribed forces or displacements within the FE model.   

The membrane described here is a flat, thin structure which 
exhibits only in-plane stresses and no bending stiffness [4,5].  
Therefore any out of plane stresses applied to the membrane, 
such as the internal fluid pressure, are counteracted by a 
geometric stiffness rather than a material stiffness.  That is, out 
of plane forces are transformed to in-plane stresses through the 
geometry of the membrane.  Membranes also have no 
compressive stiffness, therefore the membrane is quite 
susceptible to wrinkling and buckling, a feature which should 
be noted is not yet included in this analysis.  It is believed that 
the buckling and wrinkling mechanisms are crucial to the 
motion of the WSL robot and will be incorporated in the future.  
2 Copyright © 2008 by ASME 
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One possible method to accomplish this is presented by Ziegler 
[6].   

 
2.1 Element formulation 
The element model presented within this paper was 

originally presented by Arcaro [7].  In this formulation, the 
mesh consists of triangular elements, each with three nodes 
having three degrees of freedom apiece.  From the 
displacements, the strain is derived using Green’s strain which 
results in a non-linear formulation of elements. At this point in 
time, a linear Hookean elastic material model is used to develop 
the strain energy equation; however, a non-linear material 
model will be implemented in the future to better represent the 
actual mechanics of the WSL robot membrane.   

Arcaro’s model also uses triangular shaped elements 
within which the state of strain does not vary. A single element 
and its nodal displacements appear as in Figure 2.   

 

 
Figure 2. Triangular element used for 3-D analysis.   
 
Arcaro’s work is clever in that instead of representing the 

strains within the element as two normal strains and a shear 
strain, he uses three normal strains in the direction of the edges 
of the triangle.  In this way the plane in which the element lies 
is not significant.  Said differently, there exists a transformation 
[C] such that Equation 1 is true: 

 

  (1) 

 
where e1, e2, and e3 are the strains along the element edges 1, 2, 
and 3 as seen above in Figure 8,  exx and  eyy, are the strains in 
the x and y direction respectively, exy is the shear strain in the xy 
plane, and θ1, θ2, and θ3 are the angles of edges 1, 2, and 3 with 
respect to the x-axis. Using Arcaro’s derivation, the actual 
orientation of the element within the xy plane is not important 
and instead, the internal angles of the triangular element are 
used.   
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The strain energy for each element, e, can then be 
computed as in Equation 2: 
 

  

 (2) 
 
where [H] is a matrix of material properties relating the stress 
to strain and dV is the differential volume element.  Because 
the strains are constant across the element, the integral can be 
evaluated easily. In this clever way, the plane in which the 
element lies is built into the matrix [C] and the strain energy 
within each element can be computed.  Therefore it follows that 
[C] must be computed for each element and is the only 
component of the formulation that takes into account the 
position of each node. All further calculations only use the 
displacements of each node. Each of the strain values, e1, e2, 
and e3, are given by Equation 3 which is essentially the 
definition of Green’s strain [8]: 
 

  (3) 
 
where {ui} is the unit vector along side i of the element where 
i=1:3, and {zi} is given as in Equations 4-6.   

 

  
 (4) 

 

         
 (5) 

 

  
 (6) 

 
  
where {xi} is the vector containing the three Cartesian 
displacements of the ith node of element, which appears across 
from the ith edge as in Figure 2. The vector {pxi} is a vector 
containing the sum of all previous displacements for that node.  
To be clear, the resulting vector, {e1, e2, e3} is defined for each 
element, and is a function of nine displacements, three 
displacements for each of the three nodes that make up the 
element. It is at this point that our formulation differs from 
Acaro’s.  Because we must use an incremental loading strategy, 
it is necessary to store at least one vector for each node which 
contains the magnitude and direction of the sum of all previous 
displacements.  In this way, when the total potential energy is 
summed throughout the structure, it will take into account the 
path taken by the nodes and the total strain within each element 
[9].  
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As with most finite element formulations, the solution is 
the minimum point of the potential energy function, where the 
total energy for the entire model is given as in Equation 7: 

 
 (7) 

 
where {x} is the vector containing the three Cartesian 
displacements of all the nodes in the model and therefore has 
length 3n where n is the number of nodes, m is the number of 
elements, and {f} is the vector of nodal forces applied at this 
particular loading iteration.  Finally, the product, {pf}t{px}, is 
the work done by all previous externally applied loads.  It is 
therefore represented as the sum of the products of the applied 
nodal forces, {pf}, and associated displacements, {px}.  This 
term is of little importance though because it is a constant for 
the current iteration, and will vanish when Equation 7 is 
differentiated. As stated earlier though, it is important not to 
neglect the strain energy built up in the membrane from 
previous iterations. 
 

2.2 Using the Newton-Rhapson Method  
Looking at Equation 4, one can see that there is a non-

linear term, {zi}t{zi}. This makes the formulation of a 
conventional stiffness matrix very difficult. Instead, a Newton-
Rhapson method was used to solve the system of equations 
given by Equation 8, which states that the gradient of Equation 
7 must be zero: 

 

   (8) 

 
where xi is one of the nodal displacements [10]. The solution to 
Equation 9 will yield the local minimum of the potential energy 
equation and therefore the stable point of the structure.  In order 
to solve this system it is necessary to generate the Jacobian of 
Equation 9 which for clarity has the form given by Equation 9 
[11]: 
   

.  (9) 

 
Representing the Jacobian mathematically is straightforward, 
but the actual computation of such a matrix is quite complex 
considering each element of the Jacobian can be a function of 
up to 3n variables. A complete detailed description of this work 
is outside the scope of this paper. To summarize here though, 
an element-wise pattern was established which related the 
indices of each element in the Jacobian matrix to one of nine 
possible solutions for the second derivative of the strain vector, 
{e1, e2, e3} for each element. In this way, the code can assemble 
a local Jacobian matrix for each element and add it to the total 
system Jacobian matrix. A similar pattern was also established 
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for the first derivative of the strain vector as seen in the 
gradient vector as well.  

Newton’s method is an iterative method.  A guess must 
first be formulated, the gradient and Jacobian calculated, and 
then an update to that guess can be solved from the linear 
system given by Equation 10: 

 

      (10) 

 
where {x}p is the best guess to the displacements of the pth 
iteration of the Newton-Rhapson method.  As the Jacobian 
should be symmetric, Matlab’s PCG routine can be used to 
solve each step [12]. This routine is particularly useful because 
the size of the Jacobian is 3n x 3n and therefore for large 
membranes, the size of the Jacobian can become very large.   
Using the updated solution vector, {x}p+1, the Jacobian and 
gradient are recomputed and the program solves for another 
more accurate update vector.  A solution is found when the 
update vector, ({x}p+1-{x}p), is sufficiently small that the 
iterative procedure can be terminated.  The displacement 
vectors can then be added to the nodal positions and then 
displayed or processed further.  
 
 
3 LOADING CONDITIONS 

As alluded to earlier, the loading of a highly elastic 
structure must be done carefully, especially when the direction 
of the loads is closely related to the shape of the structure, as 
with the normal force generated from an internal pressure.  
Being that this model contains both an internal pressure and a 
highly elastic membrane structure, great care was taken to 
ensure the loads were appropriately applied.   

 
3.1 Incremental Loading 
The method used herein is generally called “incremental 

loading.”  As the name implies, the load is gradually and 
incrementally increased from zero to its final value.  At each 
iteration, the direction and magnitude of the load are updated 
for the most recent configuration and nodal location.  In this 
way, as the membrane is “inflated” from its static, unstressed 
position, the direction of the pressure loads acting on the 
surface can be updated.  

The two dominant loading mechanisms in this model were 
the pressure loading, and the circumferential stress contributed 
by the EAP actuators.  The loads from the actuators were 
applied radially to nodes placed at the location of the actuators 
themselves.  It is therefore fairly straightforward to compute the 
nodal forces from these loads.   

The pressure loads were handled differently.  Both the 
direction and magnitude of the nodal forces resulting from the 
pressure were based off the area vector of each element.  The 
formulation is given simply as in Equation 11,  
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                 (11) 

 
where fix, fiy, fiz are the components of the force vector applied to 
the ith node in the x, y and z direction respectively.  Similarly, 
{Aix, Aiy, Aiz} is the area vector normal to the surface of the 
element and P is the magnitude of the internal pressure.  The 
force vector appears recursively in this definition, because as 
the program cycles through the elements computing the forces, 
it is easiest to sum the forces on one node of an element with 
the previously computed forces on that node from the adjacent 
elements.  Once the pressure loads have been determined, the 
loads from the actuators are added to the pressure loads at the 
respective nodes.   

At this point the only interactions with the ground 
considered were that with the portion of the membrane on the 
internal side of the robot.  That is to say that the interior of the 
WSL robot can be thought of as being fixed to a pipe.  This 
simplification was made so that the intricacies of the model 
would not be overwhelming.  It is believed though that the 
fundamental physics underlying the everting motion can still be 
ascertained from this simplified model.  In reality, the reaction 
force will most likely be generated by the friction from the 
weight of the robot on a flat surface.  The fundamental physics 
of the everting motion though should remain the same 
regardless of the application site of the reaction force.  Figure 3 
shows the unloaded cylindrical membrane structure.  The 
cylinder ends are fixed in all three directions in this case.  This 
is nearly equivalent to affixing the inner surfaces of the 
elongated torus to the aforementioned pipe on which the WSL 
robot is moving.   

 
3.2 Incremental Iteration Termination 
It is of course necessary to determine a point of termination 

of the incremental loading strategy.  We chose to end the 
algorithm when the volume within the membrane reached a 
certain value.  This is derived from the fact that the WSL robot 
is filled with a fluid that is assumed to be incompressible.  
Therefore any configuration that the membrane takes must have 
the same total volume.  Using each element as one side of four 
of a tetrahedron, and assuming an arbitrary fixed point in the 
interior of the WSL model as the final vertex of that 
tetrahedron, the volume of said robot can be found as in 
Equation 12, 

 

                 (12) 

 
where xpij , ypij, zpij with i,j=1:3 are the Cartesian coordinates of 
the jth nodes of element i and xf , yf, zf, are the coordinates of a 
fixed point in the center of the robot.  Using this formulation, it 
is only necessary that the specified fixed point forms a line of 
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sight with every node of the model and that no line crosses 
through any of the other elements.   

Therefore, after each step of the incremental loading, the 
volume is calculated.  The final few steps are then a refinement 
of the loads to hone in on the correct volume to the desired 
accuracy.   

 
4 PRELIMINARY FEA RESULTS 

The program was first run for six incremental steps, each 
one with an increasing pressure.  No actuator loads were 
considered initially to reduce the chance of error.  The mesh 
size was refined over several runs until convergence was 
achieved.  For these preliminary models, a mesh with eleven 
rings, each with ten nodes proved satisfactory.  The mesh size 
was reduced at the ends of the model in order to achieve better 
resolution and more accurately model the curvature at the ends 
of the robot.   Figures 3 through 5 show the progression of the 
inflation from an unstressed state to a fully inflated form.   
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Figure 3. Initial configuration of the unstressed WSL membrane.   
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Figure 4. Partially inflated membrane. 
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Figure 5. Fully inflated membrane. 

 
The ballooning action of the membrane is as we would 

have expected.  We see that from Figure 3 to Figure 4, the 
cylinder begins to stretch in the radial direction, but at this 
point the ends have not rolled over, and the defining torroidial 
shape of the WSL robot has not been reached.  With increased 
internal pressure, as seen in Figure 5, the membrane becomes 
fully inflated while the ends have formed the “caps” of the 
elongated torus shape.  We believe that the caps of the 
elongated torus are fundamental to the everting motion of this 
robot because they form the transition from the inner membrane 
(the fixed interior of this model) to the outer membrane.  
Therefore, any forces generated which allow the inner 
membrane to move in relation to the outer membrane or vice 
versa should pass through this membrane.  It is therefore 
important that they appear in the model as the membrane is 
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inflated. One mechanism we believe can describe these 
interactions is described in the following section.   

After the initial inflated but unactuated membrane shape 
had been verified, the actuator loads were applied.  These loads 
were applied to nodes on only one end of the robot in an 
inwardly radial direction.  As discussed in the introduction, this 
loading mimics the contractile force generated by EAP 
actuators.  Loading only one end of the membrane ensures we 
see an asymmetric shape that can generate a forwards motion.  
To maintain the volume constraint, the internal pressure was 
also increased from the previously described loading strategy. 
Figure 6 shows the actuated results as compared to the 
unactuated shape in Figure 5.   
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Figure 6. Membrane under applied pressure and actuator 

loads exhibiting the characteristic tapered shape as compared to 
Figure 5. 

 
Studying Figure 6, one can see a slightly tapered shape of 

the lower section of the robot that results from the actuator 
loads on that end. The numerical results are more interesting.  
To predict the motion of the robot, we looked at the maximum 
and minimum position of the membrane with respect to the 
fixed nodes, which are located at 0 and 6[in] on the z-axis.  
When unactuated, the membrane was symmetric about the 
midplane of the robot, with the curved torus caps extending 
0.086[in] beyond these ends.  When loaded though, the lower 
end extended as far as 0.2[in] below the lower fixed nodes, and 
the upper end receded such that it was only .07[in] above the 
upper fixed nodes. In other words, we can observe that the 
outer membrane moved down in the negative z direction as 
much as .1[in] with respect to the inner membrane.  Therefore 
if the outer membrane were fixed, by the static friction between 
itself and the ground for instance, we would see the inner 
membrane advancing forward, causing a net forward motion of 
the robot.  These results confirm the accuracy of the membrane 
model with respect to rudimentary physical experiments [1] 
with the water worm in that they both show similar 
fundamental relationships between their shape and motion.   
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5 ANALYTICAL PRESSURE VESSEL MODEL 

In developing this finite element model we hope to have a 
benchmark or method of comparison as the underlying physical 
model is researched.  The primary mechanism being studied, 
which could explain the motion of the WSL robot, will be 
briefly introduced here. It is a pressure vessel model of the 
membrane which compares the hoop stresses of the forward 
and rearward torus ends.   

The WSL robot is fundamentally a pressure vessel in 
which the pressure is developed within the fluid through the 
elastic deformation of the membrane. It follows then that a 
pressure vessel model of the motion could be developed.  
Rather than looking at the motion though, the forces generating 
this motion are considered.  Figure 7 shows a sagittal cross 
section of the WSL robot.  A small section of the inner and 
outer membranes are fixed through which the reaction forces 
are developed.  The fixed condition of the outer membrane 
represents the robots interaction with the ground, while the 
reaction force generating the motion is quantified through the 
fixed condition of the inner membrane.    

 

 
 

Figure 7. Sagittal section of WSL robot with actuator loads 
applied and portions of the inner and outer skin fixed. 

 
A free body diagram, as seen in Figure 8, of the inner 

membrane will help us relate the reaction force responsible for 
the motion and the stresses in the inner membrane.  The 
pressure load and its reaction normal to the membrane have no 
effect on this portion of the skin and thus is omitted for clarity.   
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Figure 8. Free body diagram of the robots inner membrane.  
 
Knowing that the hoop stress is proportional to the radius 

for a given thickness and pressure [13] and that the radius of 
the forward section is greater then that of the aft section, ra<rf, 
due to the constricting effect of the actuators on the aft 
membrane, we can say that σfore>σaft.  Therefore the reaction 
stress, σreac, will be in the negative direction.  In the absence of 
this fixed condition and the resulting stress, the inner 
membrane will move in the positive x direction causing a net 
forward motion of the robot in relation to the ground.   

Although this theory explains the origin of the driving 
force, at this point it unfortunately helps us little in terms of 
finding the magnitude of that force and its relationship to the 
actuator forces.  Further study is needed to analytically relate 
the actuator forces to the shape of the membrane, such that this 
driving force relationship can be completed.    It is in this study 
that the FEA model will be extensively used.   
 
 
6 CONCLUSIONS 

The Whole Skin Locomotion robotic platform is a novel 
biologically inspired robot that uses a fundamentally different 
locomotion strategy than other robots.  Its strategy is similar to 
the cytoplasmic streaming motion seen in single celled 
organism such as the amoeba. This novel locomotion strategy 
requires unique modeling procedures to understand the 
interactions between the robot skin, fluid filled interior, the 
actuators within the skin, and the surrounding environment.  
With a more complete model of the robot, it can be designed 
and optimized for its novel form of locomotion.   

This paper detailed the development of a non-linear finite 
element (FE) model which will allow us to study the interaction 
of the membrane and actuators and predict the shape and 
motion of the robot under various actuation strategies. A simple 
membrane element was developed and an incremental loading 
strategy employed to model the displacement dependent 
pressure and actuator loads. The loading iterations were 
terminated once the membrane reached a certain volume. At 
each step, a Newton-Rhapson solver was used to determine the 
shape of the membrane. It was shown that a strictly contractile 
7 Copyright © 2008 by ASME 
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force at the aft end of the robot will generate a forwards 
motion. An underlying physical mechanism based on the hoop 
stress within the membrane was introduced which could 
possibly describe the relationship between the shape of the 
membrane skin and motion of the whole skin locomotion robot.   
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