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Abstract— Bipedal walking in human environments is made
difficult by the unevenness of the terrain and by external
disturbances. Most approaches to bipedal walking in such
environments either rely upon a precise model of the surface
or special hardware designed for uneven terrain. In this paper,
we present an alternative approach to stabilize the walking
of an inexpensive, commercially-available, position-controlled
humanoid robot in difficult environments. We use electrically
compliant swing foot dynamics and onboard sensors to estimate
the inclination of the local surface, and use a online learning
algorithm to learn an adaptive surface model. Perturbations
due to external disturbances or model errors are rejected by
a hierarchical push recovery controller, which modulates three
biomechanically motivated push recovery controllers according
to the current estimated state. We use a physically realistic
simulation with an articulated robot model and reinforcement
learning algorithm to train the push recovery controller, and
implement the learned controller on a commercial DARwIn-
OP small humanoid robot. Experimental results show that this
combined approach enables the robot to walk over unknown,
uneven surfaces without falling down.
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I. INTRODUCTION

Dynamic bipedal walking is not very stable in nature, and

open loop walking controllers tend to fail due to two sources

of error: surface unevenness and external disturbances. Most

walking controller implementations for humanoid robots as-

sume perfectly flat surfaces, and even a minute surface incli-

nation typically present in indoor environment can make the

walking unbalanced and fall down eventually. And bipedal

walking is also susceptible to external disturbances from

various sources, including local surface unevenness, surface

compliance, model error or contact with other objects. So it

is crucial to handle these two problems to make a walking

humanoid robot to operate in realistic environments.

Thus, these two problems have been a topic of major

interest in humanoid robot research. The first problem,

legged locomotion over uneven terrain, has been studied over

a number of researchers [1], [2], [3], [4], [5], [6], [7], [8],

[9], [10], [11]. One branch of approaches relies on precise

models of surface either given a priori or built by sensors

such as laser scanners, which may have some limitations in

noncontrolled environments [1], [2], [3], [4], [5]. There have
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Fig. 1. Overview of the integrated walk controller with surface learning
and push recovery controllers

been other approaches which use sensory feedback to adapt

the walk controller parameters to handle uneven surfaces [6],

[7], [8], [9], [10], [11].

The second problem of push recovery been addressed

by force-based approaches which uses force sensors and

full body model of the robot to calculate the joint torques

required to reject external disturbance force [12], [13] and

biomechanically motivated push recovery approaches which

focus on simple biomechanically motivated push recovery

behavior based on a simplified model of the robot [14], [15],

[16], [17], [18], [19].

A common drawback of these approaches is most physical

implementations of them require specialized hardware such

as triaxis force sensors and torque controlled joints, in addi-

tion to very fast feedback control and high processing power,

which makes the implementation of them on commercially-

available position-controlled humanoid robots like Nao1 or

DARwIn-OP2 infeasible. In our former works, we have

suggested practical methods to handle each problems for

generic humanoid robots [20], [21]. However they are not

integrated as a single controller to handle both problems at

once, as are many former approaches.

In this work, our aim is to design an integrated controller

for generic position-controlled humanoid robots without

force sensors that is able to walk over unknown, uneven

1http://www.aldebaran-robotics.com/
2http://www.robotis.com/xe/darwin_en
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terrain, and reject external disturbance by a full body push

recovery control. For the first problem, we use an electrically

compliant swing leg and extended foot trajectory to make the

swing foot adapt to local unevenness, and use inertial and

proprioceptive sensors to estimate the height and gradient of

the foot landing position. Then we use a online learning

algorithm to quickly learn the explicit surface model the

robot is walking on. For the second problem, we use a hier-

archical push recovery controller which generates a full body

push recovery behavior based on biomechanically motivated

primitive push recovery behaviors to reject perturbations due

to local surface unevenness or modeling error. Situationally

aware push recovery behavior is learned in a simulated

environment using reinforcement learning algorithm and

multi body model of the robot. Our walk controller is

trained and validated in simulated environment, and finally

implemented on a commercially available humanoid robot

platform, the DARwIn-OP robot. Experimental results show

that our method can make the robot successfully walk over

unknown and uneven terrain.

This paper is structured as follows. Section II describes

our former works including a walk controller for uneven

terrain and a push recovery controller. Section III explains

the integrated walk controller in detail. Section IV addresses

the simulation setup we use and shows the simulation results.

Section V shows the experimental results from the physical

DARwIn-OP robot. Finally, we conclude with some potential

issues and future directions arising from this work.

II. PRIOR WORK

In this section, we briefly introduce our prior work which

addresses the walk controller for uneven terrain and the full

body push recovery controller for a generic humanoid robot

with limited sensory, actuational and processing capabilities.

A. Walk Control over Uneven Terrain

When humans walk on an unknown terrain without visual

feedback, they feel the height and inclination of current foot

landing position at every footfall using proprioception and

force feedback, and update their belief on the surface based

on that information.

In [20], this process is implemented on a generic humanoid

robot with electrical compliance control, joint angle and

inertial feedback. During the landing phase of walk cycle,

the electrical compliance of swing ankle is lowered so that

the landing foot can adapt to the local height and inclination

of the surface. Leg movement is stopped after touchdown,

and the swing leg stiffens and sensory information from joint

angle encoders and inertial sensors are used to calculate the

feet poses using the forward kinematic model of the robot.

After getting the point estimates of the local surface model

at the landing position, an online learning algorithm is used

to learn the surface model from these noisy estimates, and

the walk trajectory is modified to take the current surface

model into account. More details on actual implementation

follow in the next section.

B. Hierarchical Push Recovery Control

Biomechanical studies show that humans display three

distinctive motion patterns in response to sudden external

perturbation, which are called ankle, hip and step push

recovery strategies [15]. Although there have been theoretical

analysis of these strategies using simplified models, physical

implementation of such analytical controllers on a position

controlled, generic humanoid robot is not straightforward,

and there have been little research on how to combine three

strategies appropriately as humans do.

Instead of relying on an analytical controller, we have

suggested in [21] a machine learning approach to learn

the appropriate push recovery controller from experiences

to maximize a predetermined cost function. To generate a

combination of push recovery behaviors, we use a hierarchi-

cal approach where three push recovery controller for each

strategy are controlled by a high level controller based on

current proprioceptive and inertial sensory information.

III. INTEGRATED WALK CONTROLLER WITH SURFACE

LEARNING AND PUSH RECOVERY CONTROL

In this section, we describe the details of our integrated

walk controller for generic, position-controlled humanoid

robots to walk on an uneven, unknown surface with external

disturbance. It consists of the step controller, walk controller,

push recovery controller and surface learner. Details of each

component are addressed in following subsections.

A. Step Controller

The step controller determines the end positions of torso

and feet for each step using current feet configuration and

commanded walk velocity. This step-based walk control

structure is used because it allows changing support foot and

foot landing position at every step, which is helpful for push

recovery control. We assume that each step starts and ends at

the double support stance where the center of mass (COM)

lies in the middle of two support positions, and define the

zero moment point (ZMP) trajectory p(φ) as the following

piecewise-linear function

p(φ) =











p0(1−
φ
φ1
)+ p1

φ
φ1

0 ≤ φ < φ1

p1 φ1 ≤ φ < φ2

p2(1−
1−φ
1−φ2

)+ p1
1−φ
1−φ2

φ2 ≤ φ < 1

(1)

where φ is the walk phase, p1 is the support position for

single support phase, p0, p2 are initial and final support

positions and φ1,φ2 are timing parameters.

B. Walk Controller

The walk controller generates foot and torso trajectories

from the initial and target foot and body position from

the step controller and current surface model. To account

for unevenness of the terrain, it maintains two disturbance

variables ~dL and ~dR for each foot to account for local

unevenness, and uses the learned surface model for account

for global unevenness.

The orientation of the swinging foot starts with the current

disturbance variable ~dL or ~dR which was measured at last
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(a) (b) (c)

Fig. 2. Walk controller for uneven terrain. (a) The swing foot starts at

ground position with distance variable ~dR. (b) The foot pose follows the
computed trajectory during the early phase of the step, and the swing leg
becomes compliant during the latter part of the step. (c) After the footfall,

the swing leg stiffens and new disturbance variable ~dR
′

is measured to keep
the torso upright at the next step.

footfall, and goes to level when the walk phase approaches

the middle. Then electrical compliance of the swing leg

is lowered so that landing foot can adapt to local terrain

unevenness there so that the robot can measure a new

disturbance variable for that foot. Figure 2 shows the process

of stepping on uneven terrain. We do not use foot pressure

sensor for touchdown detection as our DARwIn-OP robot

is not equipped with one. Instead, we let the push recovery

controller reject the perturbation due to landing timing error.

Torso trajectory is calculated according to the ZMP cri-

terion and linear inverted pendulum model. The piecewise

linear ZMP trajectory we use yields an analytic solution for

torso trajectory with zero ZMP error during the step period.

We have found that the discontinuous torso jerk at transitions

does not hamper the stability much, as the transition happens

in the most stable double support stance.

C. Surface Learner

After each footfall, we get two noisy estimates for surface

unevenness using proprioceptive and inertial sensors: the

positional difference between two feet ~fd and the normal

vector of the landed foot f̂n. If we use the N̂, the global

surface normal, as the surface model to learn, we can update

the surface model to minimize following cost functions

C f d = ‖~fd ·
ˆ

N
f d

new‖
2 +α‖

ˆ
N

f d
new − ˆN f d‖2 (2)

C f n = ‖
ˆ

N
f n

new − f̂n‖
2 +α‖

ˆ
N

f n
new − ˆN f n‖2 (3)

(a) (b) (c)

Fig. 3. Three biomechanically motivated push recovery strategies and
corresponding controller for position-controlled robot based on simplified
model. (a) Ankle strategy that applies control torque on ankle joints. (b)
Hip strategy which uses angular acceleration of torso and limbs to apply
counteractive ground reaction force (c) Step strategy which moves center
of pressure to a new position.

which results in following update rules

ˆ
N

f d
new = ˆN f d +α ′′(~fd ·

ˆN f d)~fd (4)

ˆ
N

f n
new = (1−α ′) ˆN f n +α ′ f̂n (5)

where N f d ,N f n are surface models learned using foot dis-

placement and foot normal estimates, and α ′,α ′′ are learning

rates. As both estimates have relative advantage due to the

foot shape and the configuration of the feet, we maintain two

models and combine the two into one using weighted sum:

N̂ =W1
ˆN f n +W2

ˆN f d (6)

where W1 and W2 can be determined from cross validation.

D. Push Recovery Controller

The push recovery controller is used to reject perturbations

due to modeling error or external disturbances. It is even

more needed for the walk controller on an uneven surface,

as uneven terrain will induce perturbations due to landing

pose and timing error at every footfall.

Our hierarchical push recovery controller consists of three

low level biomechanically motivated push recovery con-

trollers, which are shown in Figure 3, and a high level

controller that controls low level controllers to generate a

full body push recovery behavior.

1) Ankle Controller: The ankle controller applies control

torque on ankle joints to keep the center of mass within the

base of support. For generic robots with position controlled

actuators, controlling the ankle torque can be done by either
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controlling the auxiliary ZMP which accelerates the torso to

apply effective torque at ankle [20], [22] or modulating the

target angle of the ankle servo. In this work we use the latter

method, which is found to be effective for the DARwIn-OP

robot we use. Then the controller can be simply implemented

as

∆θankle = xankle (7)

where ∆θankle is the joint angle bias and xankle is the input of

ankle controller. In addition to ankle angle, we also modulate

arm position to apply effective torque at the ankle joint in a

similar way, unless overridden by the hip controller.

2) Hip Controller: The hip controller uses angular accel-

eration of the torso and limbs to generate backward ground

reaction force to pull the center of mass back towards the

base of support. To perform maximum work, a bang-bang

profile of the following form can be used

τhip(t) = τmaxu(t)−2τmaxu(t −TR1)+ τmaxu(t −TR2) (8)

where u(t) is the unit step function, τmax is the maximum

torque that the joint can apply, TR1 is the time the torso

stops accelerating and TR2 is the time torso comes to a stop.

After TR2, the torso angle should return to initial position.

This two-stage control scheme can be approximated for a

position controlled actuator as

∆θtorso =

{

xhip 0 ≤ t < TR2

xhip
TR3−t

TR3−TR2
TR2 ≤ t < TR3

(9)

where ∆θtorso is the torso pose bias, TR3 the time torso angle

completes returning to initial position, and xhip is the input

of hip controller. Arm rotation is also used for hip push

recovery, which overrides arm movement control by ankle

controller.

3) Step Controller: The step controller effectively moves

the base of support by taking a step. This is implemented

by overriding the step controller to insert a new step with

relative target foot position xcapture. To get rid of the situation

where the robot tries to lift the current pivoting foot and

lose balance, the support foot is determined according to the

current feet configuration and the direction of perturbation.

4) High Level Controller: The high level controller con-

trols three low level push recovery controllers using sen-

sory feedback from onboard sensors, learned surface model

and current states of controllers. As there is no analytical

controller for individual low level controllers using the raw

sensory values, let alone the combination of three controllers,

we use a machine-learning approach that trains the controller

to optimize a cost function from experience. We formalize

the high level controller as a reinforcement learning problem

with the following state

S =
{

θIMU ,θgyro,θ f oot ,WS,HCS, N̂
}

(10)

where θIMU and θgyro are torso pose and gyroscope data from

inertial sensor, θ f oot is the support foot pose calculated using

forward kinematics and onboard sensors, WS is the walk state

and HCS is the hip controller state. Then the action is defined

as the joint input for three low level controllers

A =
{

xankle,xhip,xcapture

}

(11)

and reward is defined as

R =
∣

∣θgyro

∣

∣

2
+

g

z0

|θIMU |
2

(12)

where g is the gravitational constant and z0 is the COM

height.

IV. SIMULATION RESULTS

We first use a physically realistic computer simulation

to train and validate the suggested walk controller. In this

section we discuss the details of simulation setup and its

results.

A. Simulation Setup

Our open source simulation environment consists of the

Open Dynamics Engine (ODE) with Matlab-based con-

trollers and graphics routine. This solution provide us full

controllability, observability and repeatability which is help-

ful for machine-learning tasks which require repeated trials

from the same initial state. The multi-body model of the

robot is based on actual physical property of DARwIn-OP

robot, and each servomotor is modeled as a joint controlled

by a high-gain p-controller. The update frequency of walk

controller is set to 100Hz to match that of actual robot, and

a time step of 0.0001s is used for the physics simulation.

B. Learning Setup

We used the stochastic policy gradient reinforcement

learning algorithm which randomly generates a number of

test policies around the currently best policy to get the

gradient at the point and uses stochastic gradient descent

to improve the policy. To accelerate the learning process, we

use simpler parameterized policy functions than [21], which

consists of a linear function over each inputs with dead-

band, gain, saturation parameters for ankle push recovery

controller, and a step function with magnitude and threshold

parameters for the hip and step push recovery controller.

Each trial lasts for 2 seconds, and 20 trials are done at each

episode.

C. Simulation Result

Figure 4 shows the response of the learned push recovery

controller to perturbation on inclined and declined surfaces.

We can see the push recovery controller correctly initiates

appropriate full body push recovery behaviors to stabilize

the robot on uneven surface.

We also let the robot walk over a test surface with

changing inclination (8%, 0% and -8%) and local unevenness

modeled by 40 randomly placed blocks with 70×70×1 mm

size, which create more than 3% of local unevenness in

the worst case. Figure 5 shows the comparison of walking

trials over the test surface. Figure 5 (a) shows the walk

controller without surface learning, where the combined

effect of surface inclination and local unevenness is beyond
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Fig. 4. Responses of learned push recovery controller for external
perturbation on inclined and declined surface.

the ability of the push recovery controller. Figure 5 (b) shows

the walk controller without push recovery controller, where

the robot loses balance as it walks over local unevenness

and finally falls down. On the other hand, Figure 5 (c)

shows the walk controller with both push recovery control

and surface learning. The robot rejects disturbance due to

local unevenness and sudden inclination change using full

body push recovery control, and it successfully walks over

the test surface without falling down.

V. EXPERIMENTAL RESULTS

After training the push recovery controller in the simulated

environment, we use a commercially available, open-source

DARwIn-OP robot to validate the walk controller with

learned push recovery controller.

A. Experimental Setup

We use the commercially available DARwIn-OP humanoid

robot developed by Robotis Co., Ltd. and the RoMeLa

lab. It is 45 cm tall, weighs 2.8kg, and has 20 degrees of

freedom. It has a web camera for visual feedback, and 3-

axis accelerometer and 3-axis gyroscope for inertial sensing.

Position-controlled Dynamixel servos are used for actuators,

which are controlled by a custom microcontroller connected

by an Intel Atom-based embedded PC at a control frequency

of 100hz. The same walk parameter sets are used as the

simulated environment, except for longer double support

ratio to compensate for non-ideal inertial sensor readings.

(a)

(b)

(c)

Fig. 5. Comparison of walking trials on uneven terrain. (a) walk controller
with push recovery controller (b) walk controller with surface learning (c)
walk controller with both surface learning and push recovery control.

B. Results

Figure 6 shows the walk trial over the test terrain which

consists of two plates with changing inclination (0%, 8%)

and local obstacles with 4mm thickness. We can see that the

suggested walk controller with both the surface learning and

push recovery control can correctly learn the surface model

and reject perturbation, and successfully let the robot walk

over unknown, uneven surface3. On the other hand, walk

controllers without surface learning or push recovery control

cannot make the robot walk over the surface without falling

down.

VI. CONCLUSIONS

We have proposed a simple and practical method to

make a generic position-controlled humanoid robot without

specialized hardware walk over unknown, uneven terrain.

Local terrain height and inclination is estimated by means of

electrically compliant swing leg and proprioceptive and iner-

tial sensor readings, and an online learning algorithm is used

to explicitly learn a surface model. To reject perturbations

due to model error and external disturbances, a hierarchical

push recovery controller based on biomechanically motivated

push recovery behaviors is used, which takes the current

3http://www.youtube.com/watch?v=pVesPOXGzvc
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Fig. 6. Result of walk trail over unknown, uneven terrain with DARwIn-OP
robot.

surface model, walk state and onboard sensory readings as

input. The push recovery controller is trained to minimize

a predetermined cost function by repeated trial in simulated

environment using a full body physical model of the robot,

and the learned push recovery controller is implemented

on a commercially available DARwIn-OP humanoid robot

without any modifications. Experimental results show that

our integrated walk controller can make the robot walk over

an uneven terrain which cannot be traversed by using a walk

controller that uses either a surface-learning walk controller

or a push recovery controller alone.

Our approach is simple enough to be implemented on an

inexpensive, commercially-available small humanoid robot,

yet it enables the robot to walk over an unknown, uneven

terrain without falling down. Our approach can also be used

in addition to an a priori surface model or better sensory

equipment such as a range-finder or torque sensor, which

would allow for more expressive surface model and less

perturbation due to modeling error.

Future work includes learning the walk controller using

the physical robot and a moving platform that can apply a

controlled perturbation to the robot, and implementing the

suggested algorithm to the full sized humanoid robots.
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