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Abstract 

This work presents a novel optimal design framework that treats uncertain dynamical systems described by ordinary differential equations. 

Uncertainty in multibody dynamical systems comes from various sources, such as: system parameters, initial conditions, sensor and actuator noise, 

and external forcing. The inclusion of uncertainty in design is of paramount practical importance because all real-life systems are affected by it. 

Designs that ignore uncertainty often lead to poor robustness and suboptimal performance. In this work uncertainties are modeled using Generalized 

Polynomial Chaos and are solved quantitatively using a least-square collocation method. The uncertainty statistics are explicitly included in the 

optimization process. Systems that are nonlinear, have active constraints, or opposing design objectives are shown to benefit from the new 

framework. Specifically, using a constraint-based multi-objective formulation, the direct treatment of uncertainties during the optimization process is 

shown to shift, or off-set, the resulting Pareto optimal trade-off curve.    

A nonlinear vehicle suspension design problem, subject to parametric uncertainty, illustrates the capability of the new framework to produce an 

optimal design that accounts for the entire family of systems within the associated probability space.  
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List of Variables (Nomenclature) 

Independent variables � Time � Random event 

General �, � Non-bolded variables generally indicate a scalar quantity �, � Bolded lower case variables are vectors, upper case variables are matrices � Random variable �	 Bottom right index generally indicates a state (with occasional exceptions).  �
 Top right index generally indicates a stochastic coefficient, or mode. ��  Bottom left index generally associates � to a specific collocation point. �� , �  Top left annotations indicate if a given variable is actuated or unactuated. �	
�  The four major variable annotations  � �� Transpose � �� ,   ��� Partial derivative notations � ���, � �# Matrix inverse and pseudo inverse �, � Lower and upper bounds on � ����, �� Expected value, or mean, of � ������, ��  Variance of � !�"���, �� Standard Deviation of � #$%���,  !&'��� Infimum and supremum of � 

Indexes & dimensions $( ∈ ℕ Number of degrees-of-freedom (DOF) $+, ∈ ℕ Number of generalized coordinates, where $+, ≥ $(, dependent on kinematic representation of rotation. $. ∈ ℕ Number of states $/ ∈ ℕ Number of parameters $	 ∈ ℕ Number of input wrenches, 0 ∈ ℝ23  $4 ∈ ℕ Number of outputs, 5 ∈ ℝ26 '4 ∈ ℕ Polynomial order $7 ∈ ℕ Number of multidimensional basis terms $,/ ∈ ℕ Number of collocation points 

Dynamics 8 ∈ ℝ29: Independent generalized coordinates  8; , 8<  Rates and accelerations of generalized coordinates = ∈ ℝ2> Generalized velocities  =;  Generalized accelerations 8�?� = 8A ,
 =�?� = =A Initial conditions B ∈ ℝ2C×2C Kinematic mapping matrix relating rates of generalized coordinates to generalized velocities E ∈ ℝ2F Uncertain parameters 0 ∈ ℝ23  Input wrenches G ∈ ℝ2C×2C  Square inertia matrix H ∈ ℝ2C  Centrifugal, gyroscopic and Coriolis terms J ∈ ℝ2C  Generalized gravitational and joint forces K Differential operator 5 ∈ ℝ26 System outputs L ∈ ℝ26 Output operator 

Uncertainty Quantification Ω Random event sample space N��� Joint probability density function O ∈ ℝ/6PQ Single dimensional basis terms Ψ ∈ ℝ2S Multidimensional basis terms T,�    T ∈ ℝ2:F Kth collocation point �	� ,   �	 ∈ ℝ2:F Kth intermediate variable of the ith state representing expanded quantity U ∈ ℝ2S×2:F Collocation matrix 

Dynamic Optimization minY  Optimization objective through manipulation of Y Y List of manipulated variables J Scalar objective function 
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w	  Scalarlization weights for the individual input wrench contributions \ Inequality constraints (typically bounding constraints) �	 Standard deviation scaling parameters 

 

1 INTRODUCTION 

1.1 MOTIVATION 

Design engineers cannot quantify exactly every aspect of a given system. These uncertainties frequently create difficulties in accomplishing 

design goals and can lead to poor robustness and suboptimal performance. Tools that facilitate the analysis and characterization of the effects of 

uncertainties enable designers to develop more robustly performing systems. The need to analyze the effects of uncertainty is particularly acute when 

designing dynamical systems. Ultimately, if a robust system design is to be achieved, uncertainties must be accounted for up-front during the design 

process.  

This work presents a novel parametric optimal design framework that treats uncertain dynamical systems described by linear or nonlinear 

ordinary differential equations (ODEs). System uncertainties, such as parameters, initial conditions, sensor/actuator noise, or forcing functions, are 

modeled using Generalized Polynomial Chaos (gPC) and are solved quantitatively using a least-square collocation method (LSCM). The 

computational efficiencies gained by gPC and LSCM enable the inclusion of uncertainty statistics in the optimization process.  

Specifically, this work presents the new framework in both a nonlinear programming (NLP) and Directed Search (DS) optimization setting. The 

authors have found that the benefits of treating uncertainty during the parametric design optimization process are most evident when active 

constraints are present; therefore, particular attention is given to its use in a constraint-based formulation of multi-objective optimization (cMOO). 

These benefits are illustrated in an optimal vehicle suspension design case-study where the opposing performance criteria related to passenger ride 

comfort, suspension operating displacement, and road holding are simultaneously accounted for.   

The author’s prior work related to the motion planning of uncertain dynamical systems for fully-actuated and under-actuated systems was 

presented in [1-4].  

1.2 STATE OF THE ART IN DYNAMIC DESIGN OPTIMIZATION AND UNCERTAINTY QUANTIFICATION 

In the following, a review of the literature is presented where works related to dynamic design optimization and uncertainty quantification are 

specifically covered. 

1.2.1 Dynamic Design Optimization 
Many different formulations and solver techniques are presented in the literature for approaching system design through dynamic optimization. 

The selected case-study to showcase the new design framework of this paper is related to the optimal design of vehicle suspension systems; therefore, 

particular preference is given to the review of related literature. 

A common theme is found in most of the vehicle suspension optimal design related works, namely, proper design of a suspension needs to 

address opposing design requirements related to passenger comfort (ride), suspension travel (rattle), and tire/road holding forces (holding). This 

necessitates a multi-objective approach to the optimal design problem. For example, [5-11] all employed linear vehicle models to construct a Pareto 

trade-off curve between the three referenced objectives.  

Various methods were used to model the road input. A number of authors used stationary ergodic Gaussian inputs for linear models and used a 

power-spectral density (PSD) transformation of the system’s linear frequency response [5, 6, 8, 11]. Additional attention was given to frequency 

weighted power-spectrum inputs based on standards such as ISO 2631 [6, 8, 11, 12]. This approach directly accounts for uncertainty in the road input 

of a linear system. Verros used the same Gaussian uncertain inputs for nonlinear quarter-car models through application of a Monte Carlo sampling 

technique [6]. These are examples of continuous road irregularity inputs. Additional authors treated isolated road irregularities such as speed bumps 

and potholes [12, 13].  

Work related to active and semi-active suspension designs in addition to passive designs were presented in [7, 12-14]. The excellent work 

presented by Jazar [10] and by Gobbi and co-workers [5] approached the problem analytically; where a majority of the literature used numerical 

techniques showing a slight preference to DS-based (such as Genetic Algorithms [7, 9, 12]) versus NLP-based formulations [7, 13]. Also, adjacent 

applications related to rail [8, 15, 16] and bicycle [17, 18] optimal suspension designs were approached in a similar fashion.  

1.2.2 Monte Carlo Uncertainty Quantification 
The Monte Carlo (MC) method is considered the most robust method of uncertainty quantification. The method is quite simple; the probability 

space of the system is randomly sampled $ times and statistical measures are determined from the ensemble [19]. MC provides a consistent error 

convergence rate independent of the number of uncertainties. However, the convergence rate of 1/√$ is relatively slow.  

Alternatively, quasi-Monte Carlo (QMC) methods deterministically sample the probability space with low-discrepancy sequences (LDS). QMC 

is reported to show improved constant convergence, �log $�(/$, for relatively low dimensional problems when compared to MC [20, 21]; where " is 

the number of dimensions. 

1.2.3 Generalized Polynomial Chaos (gPC) Uncertainty Quantification 
Generalized Polynomial Chaos (gPC) is a relatively new method that is rapidly being accepted in diverse applications. It’s origins come from 

early work by Wiener in the the 1930’s where he introduced the idea of homogenous chaoses [22]. His work made use of Gaussian distributions and 

the Hermite orthogonal polynomials. Xiu and Karniadakis generalized the concept by expanding the list of supported probability distributions and 

associated orthogonal polynomials [23, 24]; where the Galerkin Projection Method (GPM) was initially used. In [24-26], Xiu showed an initial 

collocation method based on Lagrange interpolation. A number of Collocation point selection methods were also show including tensor products and 

Smolyak sparse grids.  



Hays, Sandu, Sandu, Hong 6/7/2011 4 

In [27], Sandu et. al. introduced the least-squares collocation method (LSCM) and used the roots of the associated orthogonal polynomials in 

selecting the sampling points. Cheng and Sandu showed the LSCM maintains the exponential convergence of GPM yet was superior in 

computational speed in [28]; where the Hammersley LDS data set was the preferred method in selecting collocation points. Cheng and Sandu also 

presented a modified time stepping mechanism where an approximate Jacobian was used when solving stiff systems.  

1.2.4 Multi-Element gPC 
The accuracy of gPC deteriorates over time in long simulations and is dependent on continuity of the system. In an effort to address these two 

concerns, Wan and Karniadakis developed multi-element gPC (MEgPC) [29, 30]. This method discretizes the probability space into non-overlapping 

partitions. Within each partition the traditional single element gPC is performed. Summing element integrations provides a complete integration of 

the full probability space. The algorithm presented adaptively partitioned the space based on estimates of error convergence. When an error estimate 

deteriorated to a specified point the element was split. The initial work was developed for the GPM methodology using uniform distributions. 

MEgPC was subsequently extended to arbitrary distributions in [31, 32]. Foo developed a collocation-based MEgPC in [33] and further extended the 

method to support higher dimensions using ANOVA methods in [34]. 

As an alternative to MEgPC, Witteveen and Iaccarino developed a similar multi-element method based on gPC called the simplex elements 

stochastic collocation (SESC) method. This method adaptively partitions the probability space using simplex elements coupled with Newton-Cotes 

quadrature. Their method has shown an O(n) convergence as long as the approximating polynomial order is increased with the number of 

uncertainties.   

Another approach to addressing the long-term simulation accuracy of gPC was developed by Gerritsma and coworkers [35]; their approach 

constructs a new set of orthogonal polynomials adaptively as the probability density function (PDF) evolves with time. Their work has shown that the 

adaptively contrustructed polynomial basis allows for lower order approximations that have improved convergence for long-term simulations. 

1.2.5 Recent Applications of gPC/MEgPC 
The origins of gPC come from thermal/fluid applications; however, its adoption in other areas continues to expand. Sandu and coworkers 

introduced its application to multibody dynamical systems in [27, 28, 36-40]. Significant work has been done applying it as a foundational element in 

parameter [23-26, 41-59] and state estimation [60, 61], as well as system identification [62]. Relatively recent work has applied gPC to both classical 

and optimal control system design [41, 63, 64]. Also, MEgPC has been used applied to uncertainty quantification in power systems [65] and mobile 

robots [66]. 

 

The structure of this paper is as follows. A very brief introduction into the parametric optimal design of deterministic dynamical systems is 

reviewed in Section 2; Section 3 reviews the Generalized Polynomial Chaos methodology for uncertainty quantification; Section 4 introduces the 

new framework for parametric optimal design of uncertain ODE-based systems; and finally, Section 5 illustrates the strengths of the new framework 

through a cMOO vehicle suspension design case-study. Concluding remarks are found in Section 6. 

2 PARAMETRIC OPTIMAL DESIGN OF DETERMINISTIC SYSTEMS 
The new framework presented in this work is not dependent on a specific EOM formulation; formulations such as Newtonian, Lagrangian, 

Hamiltonian, and Geometric methodologies are all applicable. An Euler-Lagrange ODE formulation describes a multibody dynamical system [67, 

68] by,   Gc8���, E���d=; ��� + Hc8���, =���, E���d=��� + Jc8���, =���, E���d = Kc8���, =���, =; ���, E���d = 0��� 
(1) 

where 8��� ∈ ℝ29:  are the generalized coordinates with $+, ≥ $(; =��� ∈ ℝ2> are the generalized velocities and—using Newton’s dot notation—=; ��� contains their time derivatives; E��� ∈ ℝ2F includes system parameters of interest; fc8���, E���d ∈ ℝ2>×2> is the square inertia matrix; Hc8���, =���, E���d ∈ ℝ2>×2>  includes centrifugal, gyroscopic, and Coriolis effects; Jc8���, =���, E���d ∈ ℝ2>  are the generalized gravitational 

and joint forces; and 0��� ∈ ℝ23  are the $	 applied wrenches (or torques). (For notational brevity, all future equations will drop the explicit time 

dependence.) 

The relationship between the time derivatives of the independent generalized coordinates and the generalized velocities is, 8; = B�8, E�= (2) 

where B�8, E� is a skew-symmetric matrix that is a function of the selected kinematic representation (e.g., Euler Angles, Tait-Bryan Angles, Axis-

Angles, Euler Parameters, etc.) [3, 69, 70]. However, if (1) is formulated with independent generalized coordinates and the system has a fixed base, 

as in [1, 2], then (2) becomes 8; = =.   

The trajectory of the system is determined by solving (1)–(2) as an initial value problem, where 8�0� = 8A and
 
=�0� = =A. Also, the system 

measured outputs are defined by, 5 = L�8, 8; , E� (3) 

where 5 ∈ ℝ26 with $4 equal to the number of outputs.  

Given (1)–(3), the NLP-based formulation of the deterministic optimal design problem can be described as,  

min�   J = Jhij s. t. K�8, =, =; , E� = 0 8; = B�8, E�= 5 = L�8, 8; , E� \�5, E, 0� ≤ ? 8�0� = 80, 8c�od = 8pq 

(4) 
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8; �0� = 8; 0, 8; c�od = 8; pq  
 

where J = Jhij represents the design objective function; \ is the list of design constraints; � is the list of optimization variables; and r8�0�, 8; �0�, 8c�od, 8; c�ods are the system’s initial conditions (ICs) and optional terminal conditions (TCs).  

The NLP defined in (4) may be approached from either a sequential nonlinear programming (SeqNLP), or from a simultaneous nonlinear 

programming (SimNLP) perspective [71, 72]. (The literatures occasionally refers to the SeqNLP approach as partial discretization and to the 

SimNLP as full discretization [73].) In the SeqNLP approach, the dynamical equations (1)–(3) remain as continuous functions that may be integrated 

with standard off-the-shelf ODE solvers (such as Runge-Kutta). This yields a smaller optimization problem as only the optimization 

search/manipulated variables � are discretized. On the contrary, the SimNLP approach discretizes (1)–(3) over the trajectory of the system and treats 

the complete set of equations as equality constraints for the NLP. The discretized state variables are added to � to complete the full discretization. 

The SimNLP has a much larger set of constraints and optimization variables than the SeqNLP approach, but, enjoys a more structured NLP that 

typically experiences faster convergence.  

The DS class of optimization solvers—techniques such as Genetic Algorithms, Differential Evolution, and Particle Swarm—typically only treat 

unconstrained optimization problems. Therefore, all the design constraints in (4) need to be converted from hard constraints to soft constraints; where 

hard constraints are explicitly defined as shown in (4), and constraints that are added to the definition of the objective function, J, are referred to as 

soft constraints. This is accomplished by additional cost terms of the form  

            Jthuvwx = ∑ � max �0, |	�}, ~, ��� 2:	�Q  (5) 

where $, represents the number of system constraints, and µ is a large constant. With a large µ, this relationship is analogous to an inequality like 

penalizing term, meaning, if the constraint |	 is outside its bounds—or outside the feasible region—then it’s heavily penalized. When it’s within the 

feasible region there is no penalty. Also, by squaring the max function its discontinuity is smoothed out; however, this is an optional feature and only 

necessary for a solver that uses gradient information.  

Once the constraints have been converted to penalty terms, equation (4) can be reformulated as the following unconstrained optimization problem  

min�   J = Jhij + Jthuvwx s. t. Kc8���, =���, =; ���, E���d = 0��� 8; ��� = Bc8���, E���d=��� 5��� = Lc8���, 8; ���, E���d 
 

(6) 

Equation (6) is analogous to the SeqNLP in that it is dependent on the ODE integration of the implicit dynamics found in (1)–(3) and their associated 

ICs.  

Ultimately, the design task encoded in (4) and (6) is to determine what values of the manipulated variables � minimize J. 
Design problems frequently have multiple objective terms defined in Jhij. Since the final cost function, J, ultimately needs to be a scalar value, a 

weighted scalarization of the various terms in Jhij is commonly used.  

            Jhij = wQJQ + w J + ⋯ + wuJu (7) 

The relative weighting of the multiple terms, �wQ, w , … , wu�, yields a trade-off relationship between the various objective terms. In other words, 

there are an infinite set of optimal solutions—known as a Pareto optimal set—where each is uniquely defined by the scalarization weights. Problems 

of this nature are frequently referred to as multi-objective optimization (MOO) problems.  

A Pareto optimal set may also be found as active constraint boundaries are moved. For example, if a given output, }Q, is bounded from above by, }, we have the following constraint, }Q ≤ }. A Pareto set will be obtained from the optimal design for unique values of } as long as the constraint is 

active. Once the constraint becomes inactive the constraint has no influence on the optimal value. Occasionally, a MOO problem may be 

appropriately rewritten such that extra objective terms, say �J , … , Ju�, are redefined as problem constraints. For example, 

            

J − J ≤ 0, J − J ≤ 0⋮Ju − Ju ≤ 0, Ju − Ju ≤ 0 (8) 

where �J�, Ju� represents lower and upper bounds. In doing so, the Pareto set is now governed by the unique values of the bounds of the only the 

active constraints. This reformulation of MOO will be referred to as a constrained multi-objective optimization (cMOO) problem. The cMOO 

reformulation will be of particular significance in Section 4 where the new framework for the optimal design of uncertain dynamical systems is 

presented. 

The following section will briefly review Generalized Polynomial Chaos (gPC) which is the technique used for uncertainty quantification in the new 

framework presented in Section 4. 

3 GENERALIZED POLYNOMIAL CHAOS  
Generalized Polynomial Chaos (gPC), first introduced by Wiener [22], is an efficient method for analyzing the effects of uncertainties in second 

order random processes [23]. This is accomplished by approximating a source of uncertainty, ~, with an infinite series of weighted orthogonal 

polynomial bases called Polynomial Chaoses. Clearly, an infinite series is impractical; therefore, a truncated set of '4 + 1 terms is used with '4 ∈ ℕ 

representing the order of the approximation.  Or, 

~��� = � ~
O
/6

�A ��� (9) 



Hays, Sandu, Sandu, Hong 6/7/2011 6 

where  ~
 ∈ ℝ represent known stochastic coefficients; O
 ∈ ℝ represent individual single dimensional orthogonal basis terms (or modes); ���� ∈ ℝ 

is the associated random variable for ~ that maps the random event � ∈ Ω, from the sample space, Ω, to the domain of the orthogonal polynomial 

basis (e.g., �: Ω → �−1,1�).  
Polynomial chaos basis functions are orthogonal with respect to the ensemble average inner product, 〈O	���, O
���〉  =  � O	���O
���N���"�Q�Q  =  0,    for i≠j (10) 

where N��� is the weighting function that is equal to the joint probability density function of the random variable �. Also, 〈Ψ
 , Ψ
〉 = 1, ∀� when 

using normalized basis; standardized basis are constant and may be computed off-line for efficiency using (10). 

Generalized Polynomial Chaos can be applied to multibody dynamical systems described by differential equations [27, 36]. The presence of 

uncertainty in the system results in uncertain states. Therefore, the uncertain states can be approximated in a similar fashion as (9), 

�;	��; �� = � �;	
���Ψ
2S

�A ���, # = 1 … $. (11) 

where �;	
��� ∈ ℝ2S  represent the gPC expansion coefficients for the #p� state; and $7 ∈ ℕ represents the number of basis terms in the approximation. 

It is instructive to notice how time and randomness are decoupled within a single term after the gPC expansion. Only the expansion coefficients are 

dependent on time, and only the basis terms are dependent on the $7 random variables, �.  

The stochastic basis may be multidimensional in the event that there are multiple sources of uncertainty. The multidimensional basis functions 

are represented by Ψj ∈ ℝ2S. Additionally, � becomes a vector of random variables, � = ��Q, … , �2F� ∈ ℝ2F, and maps the sample space, Ω, to an $/ 

dimensional cuboid,  �: Ω → �−1,1�2F (as in the example of Jacobi chaoses). 

The multidimensional basis is constructed from a product of the single dimensional basis in the following manner, �
 = OQ	�O 	� … O2F	�F ,    #� = 0 … '4, � = 1 … $/ (12) 

where subscripts represent the uncertainty source and superscripts represent the associated basis term (or mode). A complete set of basis may be 

determined from a full tensor product of the single dimensional bases. This results in an excessive set of �'4 + 1�2F basis terms. Fortunately, the 

multidimensional sample space can be spanned with a minimal set of $7 = c$/ + '4d!/c$/!  '4!d basis terms. The minimal basis set can be 

determined by the products resulting from these index ranges, #Q = 0 … '4,  # = 0 … �'4 − #Q�, …,   #2F = 0 … �'4 − #Q − # − ⋯ − #�2F�Q�� 

The number of multidimensional terms, $7, grows quickly with the number of uncertain parameters,  $/, and polynomial order, '4. Sandu et. al. 

showed that gPC is most appropriate for modeling systems with a relatively low number of uncertainties [27, 36] but can handle large nonlinear 

uncertainty magnitudes.  

Substituting (9) and (11) into (1) produces the following uncertain dynamics,   

K�� �j�t��ju�
j�A ���, �  j�t��ju�

j�A ���, �  ; j�t��ju�
j�A ���, � ¡j�t�¢£

j�A ψ¥j �ξ¥�� = §�t� (13) 

where the unknowns are now the unknown state gPC expansion coefficients.  

The Galerkin Projection Method (GPM) is a commonly used method for solving (13); however, this is a very intrusive technique and requires a 

custom formulation of the dynamic EOMs. As an alternative, sample-based collocation techniques can be used without the need to modify the base 

EOMs.  

Sandu et. al. [27, 28] showed that the collocation method solves formulations such as (13) by solving (1) at a set of points, T� ∈ ℝ2F ,   � =1 … $,/, selected from the $/ dimensional domain of the random variables � ∈ ℝ2F. Meaning, at any given instance in time, the random variables’ 

domain is sampled and solved $,/ times with � = T�  (updating the approximations of all sources of uncertainty for each solve), then the uncertain 

coefficients can be determined at that given time instance. This can be accomplished by defining intermediate variables such as, 

�;	� c�; T� d = � �;	
����
2S

�A c T� d (14) 

where # = 1 … $., � = 0 … $,/, and ¨ = 1 … $	. Substituting the intermediate variables into (13) yields, K � ©	� c�; T� d, �	� c�; T� d, �;	� c�; T� d, ªx¥ ct; μ¥ d� = §�t� # = 1 … $. , � = 0 … $,/, � = 1 … $/ (15) 

where ©	� c�; T� d and �	� c�; T� d are similar expansions as defined in (14). Also, each uncertain parameter is expanded with the single dimensional 

basis as, 

Θ¬� c�; T� d = ∑ ~¬
���/6
�A O
c T� d . (16) 

Equation (15) provide a set of $,/ independent equations whose solutions determine the uncertain expansion coefficients. This is accomplished 

by recalling the relationship of the expansion coefficients to the solutions as in (14). In matrix notation (14) can be expressed for all states,  ; 	 = c=; 	���d�®�T�,           # = 1 … $ . (17) 

where the matrix, U�,
 = �
c �� d,   � = 0 … $7 , � = 0 … $,/ (18) 
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is defined as the collocation matrix. It’s important to note that $7 ≤ $,/. The expansion coefficients can now be solved for using (17), �;	��� = ¯#; 	 ,        # = 1 … $ . (19) 

where U# is the pseudo inverse of U if $7 < $,/. If $7 = $,/, then (19) is simply a linear solve. However, [28, 37-40] presented the least-squares 

collocation method (LSCM) where the stochastic state coefficients are solved for, in a least squares sense, using (19) when $7 < $,/. Reference [28] 

also showed that as $,/ → ∞ the LSCM approaches the GPM solution; by selecting 3$7 ≤ $,/ ≤ 4$7 the greatest convergence benefit is achieved 

with minimal computational cost. LSCM also enjoys the same exponential convergence rate as '4 → ∞.   

System outputs of (15) are analogous to (3); they are also uncertain and may equally be approximated in a similar fashion to (17) and 

subsequently solve for their expansion coefficients through (19).  

The nonintrusive nature of the LSCM sampling approach is arguably its greatest benefit; (1) may be repeatedly solved without modification. 

Also, there are a number of methods for selecting the collocation points and the interested reader is recommended to consult [24-28] for more 

information. 

4 OPTIMIZATION-BASED DESIGN OF UNCERTAIN DYNAMICAL SYSTEMS 
The new framework for the optimal design of uncertain dynamical systems is now presented; this is a reformulation of (4) where IC, sensor, 

actuator, and parameter uncertainties are treated in a unified manner through the gPC techniques described in Section 3. The reformulation is, 

min�   Jhij��; ��   s. t. Kc8��; ��, =��; ��, =; ��; ��, E��; ��d = 0��; �� 8; ��; �� = Bc8��; ��, E��; ��d=��; �� 5��; �� = Lc8��; ��, 8; ��; ��, E��; ��d \�5��; ��, E��; ��, 0��; ��, �� ≤ ? 8�0; �� = 80, 8c�o; �d = 8pq 8; �0; �� = 8; 0, 8; c�o; �d = 8; pq  
 

(20) 

The most interesting part of the new design framework comes in the ability to approach the design accounting for uncertainties by way of statistical 

moments of �, such as expected values, variances, or standard deviations. These statistical moments may now be included in the definitions of the 

objective function, J��; ��, and constraint equations, \��; ��. From [19], the statistical expected value is defined as, 

�� = ������� = ³ ���� N���"�´  (21) 

and the variance, 

�� = ��������� = ³ ����� − ��� N���"�´ = ������� − ��� � (22) 

with the standard deviation, �� = µ���������. With these definitions new objective function terms may be defined. For example, the mean and 

standard deviation of an output may be efficiently computed by, �5 = ��5�t; ��� = 5A�t�〈ΨA, ΨA〉 (23) 

�5 = ¶� ·c5�t; �� − �5d ¸ = ¹��5
�t�� 2S

�Q 〈Ψ
 , Ψ
〉 (24) 

Notice that due to the orthogonality of the polynomial basis these computations result in a reduced set of arithmetic operations on the respective 

expansion coefficients. Also, recall that 〈Ψ
 , Ψ
〉 = 1, ∀� when using normalized basis; standardized basis are constant and may be computed off-

line for efficiency using (10). A number of efficient statistical quantities may be determined from the expansion coefficients. Additional examples of 

these statistical terms will be presented within the context of the case-study detailed in Section 5. Also, the authors presented a number of gPC based 

objective function and constraint equation terms in [1-4].  

Equation (20) is the NLP formulation of the new framework for the optimal design of uncertain dynamical systems; it may also be solved through 

a SeqNLP or SimNLP approach as described in Section 2. The SeqNLP approach directly leverages the LSCM-based gPC solver, however, the 

SimNLP approach requires slight modification in the formulation to account for the full discretization of (1)–(3) in light of the LSCM technique.  

min�   Jhij��; ��   s. t. K �8c TQ d, =c TQ d, =; c TQ d, Ec TQ d� = 0c TQ d 8; c TQ d = B �8c TQ d, Ec TQ d� =c TQ d 5c TQ d = L �8c TQ d, 8; c TQ d, Ec TQ d� 8c0; TQ d = 80,1, 8; c0; TQ d = 8; 0,1 ⋮ K º8 � T2:F � , = � T2:F � , =; � T2:F � , E � T2:F �» = 0 � T2:F � 8; � T2:F � = B º8 � T2:F � , E � T2:F �» = � T2:F � 5 � T2:F � = L º8 � T2:F � , 8; � T2:F � , E � T2:F �» 

(25) 
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8 �0; T2:F � = 80,2:F , 8; �0; T2:F � = 8; 0,2:F \�5���, E���, 0���, �� ≤ ? 
 

Equation (25) duplicates the deterministic dynamical equations (1)–(3) $,/ times where each set has a unique collocation point, T� . Each unique 

set of dynamical equations is then fully discretized and � is updated appropriately as described in Section 2. However, the system constraints, \�5���, E���, 0���, �� ≤ ?, are calculated using the statistical properties determined by the LSCM and the $,/ sets of dynamical equations. 

If a DS solver is to be used then (20) must be reformulated as an unconstrained problem. This requires all the hard design constraints in (20) to be 

converted to soft constraints by including them in the objective function. This may be accomplished in a similar fashion to the deterministic version 

presented in (5); the uncertain penalty-based constraints take the form of,  

            Jthuvw�t; �� = ∑ � max �0, |	�t; ��� 2:	�Q  (26) 

Once the constraints have been converted to penalty terms, equation (20) can be reformulated as an unconstrained optimization problem by, 

min�   J = Jhij��; �� + Jthuvw�t; �� s. t. Kc8��; ��, =��; ��, =; ��; ��, E��; ��d = 0��; �� 8; ��; �� = Bc8��; ��, E��; ��d=��; �� 5��; �� = Lc8��; ��, 8; ��; ��, E��; ��d 
 

(27) 

Again, equation (27) is analogous to the SeqNLP version defined in (20); it is dependent on the ODE integration of the implicit dynamics found in 

(1)–(3) and their associated ICs.  

The new framework presented in (20), (25) or (27) and  allows designers to directly treat the effects of modeled uncertainties during the optimal 

design process. The computational efficiencies of gPC enable the inclusion of statistical measures in objective function and constraint equations at a 

reduced computational cost as compared to contemporary techniques. However, the framework does introduce an additional layer of modeling and 

computation [2]. Therefore, it is of value to ask when the application of the new framework (20), (25), or (27) will yield a more robust design over 

the traditional deterministic optimal design approach presented in (4) and (6). Based on the authors’ experience, the following general guidelines can 

help determine if a given design will benefit from the new framework: 

1. System Nonlinearities: The probability density functions (PDFs) of uncertainties are likely to become skewed when propagated through a 

nonlinear system; the new framework will capture this information in the expected value measures. 

2. Active Constraints: Any design that has active constraints (i.e., |	��; �� = 0 for at least one i) will benefit from the inclusion of standard 

deviation information in the constraint definitions; for example, |	�t; �� = c�¼3 ± �¼3d − }	 = 0 will off-set the optimal design in a standard 

deviation sense to account for the entire family of realizable systems. 

3. Multi-objective Problems: Any multi-objective design that is reformulated as a cMOO will benefit from the added statistical information 

of the new framework. This results in a shifted, or offset, Pareto optimal set (as will be illustrated in the case-study presented in Section 5). 

Application of the new framework directly to a penalty-based MOO formulated problem will likely not capture the Pareto offset determined 

by the cMOO formulation. This point is simply a restating of item #2 within the MOO context. 

The new framework is a general formulation for the optimal design of dynamical systems described by ODEs. In an effort to show-case the 

benefits of the new framework a vehicle suspension optimal design problem is presented in Section 5.  

5 AN ILLUSTRATIVE CASE-STUDY 
This section presents an optimal design case-study of a passive nonlinear vehicle suspension as an illustration of the benefits that the general 

framework presented in Section 4 can provide. Many studies related to the optimal design of vehicle suspension parameters are found in the literature 

[6, 8, 9, 11-13]. Studies include linear and nonlinear vehicle models; MOO design; passive, semi-active, and active suspensions; and uncertain road 

inputs. This case-study is not comprehensive, but aims to illustrate the benefits of the new framework. As such, a nonlinear quarter-car suspension 

model was selected that is subject to parameter uncertainties. The literature frequently accounts for three conflicting objectives in a MOO design 

setting: the passenger comfort (ride); suspension displacement (rattle); and tire road holding forces (holding). These opposing objective terms yield 

the expected Pareto optimal set for a given parameter set; this case-study will address the optimal design through a cMOO. 

 
Figure 1—An idealized 2-DOF deterministic quarter-car suspension model with a nonlinear asymmetric damper 
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5.1 VEHICLE SUSPENSION MODEL 

An idealized two degree-of-freedom (DOF) nonlinear quarter-car suspension model shown in Figure 1 was used.  

This system results in the following deterministic nonlinear dynamical equations-of-motion (EOMs), ¾<. = − �.¿. �¾. − ¾� − 1¿. À�¾;., ¾;�
¾<. = �.¿ �¾. − ¾� + 1¿ À�¾;. , ¾;� − �¿ c¾ − ¾+d (28) 

The model has sprung and unsprung masses, ¿. and ¿; vertical mass positions about the equilibrium, �¾. , ¾�, and velocities �¾;., ¾;�; suspension 

spring and damping coefficients, �. and Á.; tire spring coefficient, �; and ground input position, ¾+. The system is nonlinear due to the asymmetric 

damping force that is dependent on the velocity direction.  À�¾;., ¾;� = Â Á.�¾;. − ¾;�,   �¾;. − ¾;� ≥ 0Ã Á.�¾;. − ¾;�,   �¾;. − ¾;� ≥ 0Ä (29) 

The ratio of damping forces is determined by the scalar Ã.  

The literature contains various methods for modeling the road input, ¾+. A number of authors used stationary ergodic Gaussian inputs for linear 

quarter-car models through a power-spectral density (PSD) transformation of the system’s linear frequency response [8, 11]. Additional attention was 

given to frequency weighted power-spectrum inputs based on standards such as ISO 2631 [6, 8, 11, 12]. This approach directly accounts for 

uncertainty in the road input of a linear system. Verros used the same Gaussian uncertain inputs for nonlinear quarter-car models through application 

of a Monte Carlo sampling technique [6]. These are examples of continuous road irregularity inputs. Additional authors treated isolated road 

irregularities such as speed bumps and potholes [12, 13]. These inputs were modeled by, ¾+ = U !#$�� �� (30) 

where U represents the amplitude of the bump or pothole; � = Å ÆÇ  is the frequency of the irregularity determined by the vehicle velocity � and base 

length of the irregularity ¨; and � represents time.  

This work chose to use a series of isolated road bumps defined by (30). Each bump is uniquely spaced with no overlap with one another and their 

amplitude was U = 0.15 meters. The frequencies of the speed bumps were selected to be É = �1, 5, 10, 15� Hertz. Filtered Gaussian noise with a 

maximum amplitude of U = 0.03 meters was super-imposed over the series of speed bumps. The cut-off frequency of the filtered Gaussian noise was 

35 Hertz. A representative road input signal is shown in Figure 2.    

5.1.1 Optimal Design of Deterministic System 

Contemporary optimal designs of a vehicle suspension commonly account for three opposing performance indexes: ride, rattle, and road holding. 

These performance indexes may be defined as, 

Ê¬	(Ë = ³ ¾<. "�tf

A  (31) 

Ê¬�ppÇË = ³ �¾. − ¾� "�tf

A  
(32) 

Ê�4Ç(	2+ = ³ c¾+ − ¾d "�tf

A  
(33) 

The ride index aims to minimize the vertical accelerations experienced by a passenger. The rattle index aims to avoid the suspension displacement 

reaching its physical limits. The holding aims to minimize the variation of the dynamic force between the tire and the road [11]. Equation (33) is 

defined by the tire deflection. Given the linear relationship between the tire deflection and the tire/road force the same minimized variation is 

accomplished.  

 

Figure 2—A representative road input signal created with a series of isolated speed bumps with filtered noise superimposed. 
A MOO approach to treating these opposing objectives is to define a scalarized cost function as, 
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Ê = NQÊ¬	(Ë + N Ê¬�ppÇË + NÌÊ�4Ç(	2+ (34) 

Such a definition results in the Pareto optimal set which depends on the weights �NQ, N , NÌ�. As discussed in Section 2, the MOO can be 

reformulated in a constraint formulation yielding a similar Pareto optimal set. For example, Ê¬�ppÇË and Ê�4Ç(	2+ can be converted to hard constraints 

of the dynamic optimization problem. However, to reflect a more physical meaning of these qualities, (31)–(32) will be slightly redefined to root-

mean-square (rms) values determined over the trajectory of the system.   

Ê¬�ppÇË = �¿!�¾. − ¾� = Í1
tf

³ �¾. − ¾� "�tf

A  (35) 

Ê�4Ç(	2+ = �¿!c¾+ − ¾d = Í1
tf

³ c¾+ − ¾d "�tf

A  (36) 

Hard constraints of the form presented in (8) and based on (35)–(36) can be defined as, Ê¬�ppÇË ≤ Ê¬�ppÇË ≤ Ê¬�ppÇË (37) Ê�4Ç(	2+ − Ê�4Ç(	2+ ≤ 0 (38) 

where �Ê¬�ppÇË , Ê¬�ppÇË , Ê�4Ç(	2+� represent lower/upper bounding constraints. By sweeping through reasonable ranges for �Ê¬�ppÇË , Ê¬�ppÇË , Ê�4Ç(	2+� a 

Pareto optimal set may be found. 

Therefore, the NLP-based cMOO formulation for the deterministic vehicle suspension design problem is, 

min�={�!,Á!}
  J = ³ ¾<. "�tf

A = }Î s. t. ¾<. = − �.¿. �¾. − ¾� − 1¿. À�¾;. , ¾;� 
¾<. = �.¿ �¾. − ¾� + 1¿ À�¾;., ¾;� − �¿ c¾ − ¾+d 
5 = �¾. , ¾;., ¾ , ¾;, ³ ¾<. "�tf

A � Ê¬�ppÇË − Ê¬�ppÇË ≤ 0,   �Ï��Ï$!#Ð$� Ê¬�ppÇË − Ê¬�ppÇË ≤ 0,   �ÑÐ¿'�Ï!!#Ð$� Ê�4Ç(	2+ − Ê�4Ç(	2+ ≤ 0 �. ≤ �. ≤ �. Á. ≤ Á. ≤ Á. Ò�0� = Ò0 Ò; �0� = Ò; 0 
 

(39) 

where r�., �.s and rÁ. , Á.s are reasonable physical bounds on the spring and damping coefficients, respectively; �Ò0, Ò; 0� are initial conditions for the 

vector of state variables, Ò = �¾. , ¾;., ¾ , ¾;�Ó; and the list of solver manipulated variables is � = ��. , Á.�. Table 1 lists all nominal values for the 

system parameters and bounds for (39). Notice that the fifth output, }Î = � ¾<. "�tfA , is equal to the defined measure for the ride quality to be 

minimized.  

Equation (39) may also be reformulated for non-gradient-based DS solvers as was presented in (6). 

Table 1—System parameters, bounds, and uncertainties 

Parameter Mean (�) Std (�) Units (SI) ¿. 376 ¿.A/8 kg ¿ ¿./4 - kg �. 30,000 �.A/8 N/m �. 300,000 - N/m �. ℱcÊ¬�ppÇËd = 23,339 
 

- N/m Á. 2,000 Á.A/8 N-s/m Á. 50,000 - N-s/m Á. 1+ �7C - N-s/m Ã 1.39 ÃA/8 - � 200,000 �A/8 N/m Ê�4Ç(	2+ 
 

Figure 5 - m Ê¬�ppÇË , Ê¬�ppÇË 
 

Figure 4 - m �Ò0, Ò; 0� zeros($/, 1� - - � 11.18 - m/s 
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5.1.2 Optimal Design of Uncertain System 

None of the cited works for optimal vehicle suspension design treated uncertain system parameters; however, the new framework presented in 

Section 4 is capable of treating system uncertainties originating from sensor outputs, actuator inputs, as well as system parameters and initial 

conditions within the unified gPC methodology (as presented in Section 3). Given the prior emphasis on input uncertainty in the literature, this work 

focuses on illustrating treatment of parametric uncertainty applied to a nonlinear system model. Varying passenger and cargo loads, 

fatiguing/deteriorating suspension components, and variations in tire air pressure are all very practical sources of uncertainty in a vehicle. Therefore, 

five system parameters were selected for this study, E��� = �¿!���, �!���, Á!���, Ã���, �&���, �. Each uncertain parameter is assumed to have a 

uniform distribution and is therefore modeled with a Legendre polynomial expansion. This takes the form of, ~¬��¬� = ~¬A + ~¬Q�¬ , � = 1 … $/ (40) 

Figure 3 illustrates the uncertain nonlinear model. 

 

Figure 3—An uncertain 2-DOF quarter-car suspension model with a nonlinear asymmetric damper. The five uncertain 

parameters are, E��� = �ØÙ���, ÚÙ���, ÛÙ���, Ü���, ÚÝ����. 
This system results in the following set of uncertain nonlinear EOMs, ¾<.��� = − �.���¿.��� c¾.��� − ¾���d − 1¿.��� Àc¾;.���, ¾;���d 

¾<��� = �.���¿ c¾.��� − ¾���d + 1¿ Àc¾;.���, ¾;���d − ����¿ �¾��� − ¾+���� 

(41) 

and the corresponding NLP-based cMOO design problem is, 

min�={ �!0,Á!0}
 J��� s. t. ¾<.��� = − �.���¿.��� c¾.��� − ¾���d − 1¿.��� Àc¾;.���, ¾;���d 

¾<��� = �.���¿ c¾.��� − ¾���d + 1¿ Àc¾;.���, ¾;���d − ����¿ c¾��� − ¾+d 

5 =
Þßß
ßßß
ßà ¾.���¾;.���¾���¾;���³ c¾<.���d "�tf

A�¿!c¾��� − ¾+dáââ
âââ
âã
 

Ê¬�ppÇË��� − Ê¬�ppÇË ≤ 0,   �Ï��Ï$!#Ð$� Ê¬�ppÇË − Ê¬�ppÇË��� ≤ 0,   �ÑÐ¿'�Ï!!#Ð$� 
 

(42) 

 Ê�4Ç(	2+��� − Ê�4Ç(	2+ ≤ 0 �. ≤ �.A��� ≤ �. Á. ≤ Á.A��� ≤ Á. Ò�0� = Ò0, Ò; �0� = Ò; 0 
 

 

where the uncertain asymmetric damping force is, 

Àc¾;.���, ¾;���d = ä Á.���c¾;.��� − ¾;���d,   c¾;.��� − ¾;���d ≥ 0Ã��� Á.���c¾;.��� − ¾;���d,   c¾;.��� − ¾;���d ≥ 0Ä (43) 

The objective function is now a function of the uncertain ride comfort, (which is the fifth system output, }Î��� = � c¾<.���d "�tfA ).  J��� = E�}Î���� + µ����}Î���� =  μ¼æ + σ¼æ   (44) 
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= }
The rattle and holding constraints are also functions of the uncertainties

Ê¬�ppÇË���
where the various μ and σ computations take the form shown in 

standard deviation. These constraints represent the extreme 

is a function of the sixth system output, }è��� = �¿!Ê�4Ç(	2+�=  μ¼é +
= ê}èA〈Ψ

Notice that due to the orthogonality of the polynomial basis the computations 

respective expansion coefficients. No integrals are required and the statistical computations are relatively efficient.

It is important to re-emphasize that equations (45

within the probability space can still not satisfy the constraints. In order to guarantee that all systems within the probability space will satisfy the 

constraints, equations (45)–(46) would need to be re

deviations; however, the supremum and infimum are very expensive to calculate. The scaling constants, 

a desired percentage of the systems from the probability space will satisfy the constraints. This point is illustrated in gre

Results Section.  

Finally, the design objective of (42) is to determine mean values for the suspension components, 

subject to the rattle and holding constraints; where 

parameters and associated bounds used in the case-study.

5.1.3 Results 
Figure 4 and Figure 5 best illustrate the benefits of treating uncertainty during the optimal design process. These results clearly show that the 

presence of uncertainty in a system results in an off-set of the Pareto optim

off between the ride objective and the rattle constraint. 

the trade-off between the ride objective and the holding

Both Figure 4 and Figure 5 show the Pareto curves flattening out at some point. This occurs when the system transitions from one active 

constraint to the other. Meaning, in Figure 4, the active constraint is the 

slope flattens out the holding constraint is active. Since the 

behavior is evident in Figure 5, however, the roles switch. First, the 

constraint.  

Figure 4—A single 2D plane from the 3D Pareto optimal set sho

constraint; the holding constraint is held constant, 

cases are shown. These results confirm that the presence 

realize a more robust design. The set enclosed by the ellipse correspond to 

6/7/2011 

}ÎA〈ΨA, ΨA〉 + ¹�c}Î
d 2S

�Q 〈Ψ
 , Ψ
〉 

constraints are also functions of the uncertainties. The uncertain rattle constraints may be defined as

� � = ëcμìC + �QσìCd − cμìí − � σìíd −  Ê¬�ppÇË ≤ 0Ê¬�ppÇË − cμìC − �ÌσìCd − cμìí + �îσìíd ≤ 0 Ä 
computations take the form shown in (44) and defined in (23)–(24); the constants �	

. These constraints represent the extreme rattle conditions from a standard deviation perspective. The un�¿!c¾��� − ¾+d and may be defined as,   ��� = �E�}è���� + �Îµ����}è����� − Ê�4Ç(	2+ ≤ 0 + �Îσ¼é − Ê�4Ç(	2+ ≤ 0  
ê 〈ΨA, ΨA〉 + �Î¹�c}è
d 2S


�Q 〈Ψ
 , Ψ
〉ï − Ê�4Ç(	2+ ≤ 0 

Notice that due to the orthogonality of the polynomial basis the computations in (44)–(46) result in a reduced set of efficient operations on the 

No integrals are required and the statistical computations are relatively efficient. 

45)–(46) constrain the system in a standard deviation sense. This means a subset of the systems 

still not satisfy the constraints. In order to guarantee that all systems within the probability space will satisfy the 

would need to be redefined such that the supremum and/or infimum statistics are used instead of the standard 

are very expensive to calculate. The scaling constants, �	, may be used to ‘tune’ the design such that 

a desired percentage of the systems from the probability space will satisfy the constraints. This point is illustrated in gre

is to determine mean values for the suspension components, � = � �.A, Á.A
constraints; where � �.A, Á.A� are bounded by r�., �.s and rÁ. , Á.s, respectively. Table 

study. 

best illustrate the benefits of treating uncertainty during the optimal design process. These results clearly show that the 

set of the Pareto optimal design trade-off curve. Figure 4 is the 2D Pareto curve showing trade

constraint. Figure 5 shows a 2D Pareto curve perpendicular to that shown in 

holding constraint.  

show the Pareto curves flattening out at some point. This occurs when the system transitions from one active 

, the active constraint is the rattle constraint while the curve has a negative slope. However, when the 

constraint is active. Since the holding constraint is constant in this plane the Pareto curve has a slope of zero. The same 

, however, the roles switch. First, the holding constraint is active and then the system transitions to the flat 

 
A single 2D plane from the 3D Pareto optimal set showing the trade-off between the objective 

constraint is held constant, ðñòóôõö÷ = ?. ?øù �Ø�. Both the deterministic (dOpt) and uncertain (uOpt) 
the presence of uncertainty requires an off-set of the Pareto optimal solution set to 

The set enclosed by the ellipse correspond to Figure 6. 
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constraints may be defined as, 

(45) 

 represent scaling factors of the 

conditions from a standard deviation perspective. The uncertain holding constraint 

(46) 

result in a reduced set of efficient operations on the 

eviation sense. This means a subset of the systems 

still not satisfy the constraints. In order to guarantee that all systems within the probability space will satisfy the 

statistics are used instead of the standard 

, may be used to ‘tune’ the design such that 

a desired percentage of the systems from the probability space will satisfy the constraints. This point is illustrated in greater detail in the following 

.A�, that minimize the ride being 

Table 1 details all the uncertain 

best illustrate the benefits of treating uncertainty during the optimal design process. These results clearly show that the 

is the 2D Pareto curve showing trade-

cular to that shown in Figure 4; this figure shows 

show the Pareto curves flattening out at some point. This occurs when the system transitions from one active 

traint while the curve has a negative slope. However, when the 

is constant in this plane the Pareto curve has a slope of zero. The same 

constraint is active and then the system transitions to the flat rattle 

off between the objective ride and rattle 

Both the deterministic (dOpt) and uncertain (uOpt) 

set of the Pareto optimal solution set to 
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Figure 5—A single 2D plane from the 3D Pareto optimal set showing the trade

constraint; both the compression and extension 

deterministic (dOpt) and uncertain (uOpt) cases are shown. These results 

off-set of the Pareto optimal solution set to realize a more robust

One distinct difference is apparent between Figure 

before the uncertain curve. However, Figure 5 has an opposite behavior; the uncertain curve transitions before the deterministic one. 

Figure 7 help illustrate why this inconsistent behavior exists. 

planes, �úÐ¨"#$û/����¨Ï, úÐ¨"#$û/�#"Ï, ����¨Ï/�#"Ï0.034 �¿� the deterministic optimal design has an active 

the uncertain �¬�ppÇË∗  is so large, the optimal design was pushed to a significantly lower 

value; thus, the deterministic Pareto transitions first. This same behavior is apparent in ����¨Ï plane. Figure 5 presents the Pareto relating the 

the uncertainty box enclosing the uncertain mean design

encounters the rattle constraint before the corresponding deterministic solution does. 

Figure 6—Projection of the 3D deterministic and uncertain solutions onto th

of an optimal solution with an active rattle constraint.?. ?øù �Ø�. 

Figure 7—The 2D projection of Figure 5’s 3D 

the transition from an active holding constraint

bounds are: ðýþ��ó� = ðýþ��ó� = ?.�?ø �Ø�, and 
6/7/2011 

 
rom the 3D Pareto optimal set showing the trade-off between the objective 

constraint; both the compression and extension rattle constraints are held constant, ðýþ��ó� = ðýþ��ó
deterministic (dOpt) and uncertain (uOpt) cases are shown. These results confirm that the presence of uncertainty requires an 

set of the Pareto optimal solution set to realize a more robust design.  

Figure 4 and Figure 5; in Figure 4 the deterministic Pareto curve transition

has an opposite behavior; the uncertain curve transitions before the deterministic one. 

help illustrate why this inconsistent behavior exists. Figure 6 presents a projection of the 3D optimal solution onto the three orthogonal 2D �#"Ï�. When the bounding constraints are set to Ê¬�ppÇË = Ê¬�ppÇË
the deterministic optimal design has an active holding constraint where the uncertain optimal design has an active 

is so large, the optimal design was pushed to a significantly lower ��4Ç(	2+∗  value when compared to the deterministic 

value; thus, the deterministic Pareto transitions first. This same behavior is apparent in Figure 7 which shows the 2D projection only in 

presents the Pareto relating the holding constraint to the ride objective; so, as the holding bound increases 

the uncertainty box enclosing the uncertain mean design—created by the standard deviation in the respective 

constraint before the corresponding deterministic solution does.  

 
Projection of the 3D deterministic and uncertain solutions onto the three orthogonal 2D planes. This is an example 

constraint. The constraint bounds are: ðýþ��ó� = ðýþ��ó� =

 
’s 3D deterministic and uncertain solutions onto the holding/rattle

constraint to an active rattle constraint as the holding bound is increased

, and ðñòóôõö÷ = �?. ?ø?�, ?. ?ø�, ?. ?øø�, ?. ?ø�� �Ø
13 

off between the objective ride and holding 

ýþ��ó� = ?.�?ø �Ø�. Both the 
that the presence of uncertainty requires an 

the deterministic Pareto curve transitions its active constraints 

has an opposite behavior; the uncertain curve transitions before the deterministic one. Figure 6 and 

presents a projection of the 3D optimal solution onto the three orthogonal 2D 

¬�ppÇË = 0.203 �¿� and Ê�4Ç(	2+ =
t where the uncertain optimal design has an active rattle constraint. Since 

value when compared to the deterministic ��4Ç(	2+∗  

which shows the 2D projection only in úÐ¨"#$û/
bound increases Figure 7 shows how 

standard deviation in the respective rattle and holding direction—

e three orthogonal 2D planes. This is an example = ?.�?ø �Ø�, and ðñòóôõö÷ =

holding/rattle plane. This shows 

bound is increased. The constraint � Ø�. The markers for the 
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deterministic and uncertain mean designs correspond within a given set. Also, the line of the uncertainty box associated with a 

given set matches line of the holding bound for that set.  

The corresponding 2D trade-off curve in the parameter space for the case corresponding to Figure 5 with Ê¬�ppÇË = Ê¬�ppÇË = 0.203 �¿� is shown 

in Figure 8. This figure is instructive in that it shows the optimal mean spring constant, ��.A�∗, is found to be at the lower bound, �., for a majority of 

the designs. Only when Ê�4Ç(	2+ is equal to the two lowest values shown in Figure 5 does the optimal mean spring constant leave the lower bounding 

constraint. This behavior makes sense in that the ride objective is most influenced by the �. versus Á. [5]; therefore, as long as the active constraint 

can be satisfied with �.A = �. then the Pareto curve is largely defined by the damping mean, Á.A. Again, the design from the new framework shifts the 

optimal parameter set relative to that designed by a traditional deterministic optimal design. 

 

Figure 8—Parameter Pareto trade-off curve when ðýþ��ó� = ðýþ��ó� = ?.�?ø �Ø�. 
The final point that illustrates the benefits of the new framework is shown in Figure 9; this figure shows the resulting rattle constraint values of 

the optimal deterministic design applied to an uncertain system. A 1000 sample Monte Carlo simulation shows that 59.6% of the systems violated the 

constraints. However, the design produced by the new framework defined in (42)–(46), with unity standard deviation scaling, � = 1, resulted in only 

11.4% of the systems violating the constraints. Slightly increasing the standard deviation scaling to � = 1.25 resulting in only 3.5% of the systems 

failing to satisfy the constraints  (see Figure 10). As described in Section 5.1.2, designers may choose to approach the problem with the constraints 

defined with supremum and/or infimum measures to guarantee the entire family of systems in the probability space will satisfy the constraints. 

However, this approach is relatively computationally costly. Therefore, a scaled standard deviation approach, as shown here, can yield an acceptably 

robust design. Similar design results are observed with regards to an active holding constraint as well, but are not shown for brevity. 

 
Figure 9—Monte Carlo results (1000 runs) showing 59.6% of the systems in the probability space violate the rattle constraints 

when the deterministic optimal design is applied to an uncertain system; where ðýþ��ó� = ðýþ��ó� = ?. ��� �Ø� and ðñòóôõö÷ =?. ?øù �Ø�.  
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Figure 10—Constraint violations from designs produced with the new framework can be controlled, or tuned, with the proper 

selection of the standard deviation scaling. Slightly increasing the scaling from þ = � to þ = �.�� reduces the number of 
systems violating the constraints from 11.4% to 3.5%; where 1000 Monte Carlo simulations were used to determined the 

results; and ðýþ��ó� = ðýþ��ó� = ?. ��� �Ø� and ðñòóôõö÷ = ?. ?øù �Ø�. 
6 CONCLUSIONS 

This work has presented a new framework for the parametric optimal design of uncertain ordinary differential equation systems. The framework 

allows practitioners to model sources of uncertainty using the Generalized Polynomial Chaos methodology and to solve the dynamics using a least-

squares collocation method. Subsequently, statistical information from the uncertain dynamics can be included in formulations of the objective 

function and of the constraints, to perform optimal designs under uncertainty. Robust designs benefit from the new framework when the system is 

nonlinear, has active constraints, or is a multi-objective optimization problem. In the case of a multi-objective optimization problem, a constraint-

based formulation of the problem was shown to produce an off-set Pareto optimal trade-off curve confirming the need to directly treat uncertainties 

during the optimal design phase. An optimal nonlinear vehicle suspension design problem, subject to parametric uncertainty, was used to illustrate 

how the new framework produces an optimal design that accounts for the entire family of systems within the associated probability space. This adds 

robustness to the design of the optimally performing system.  

In future work the authors will expand the new framework to investigate optimal apportionment of uncertainty related to engineered components 

within a system such as to minimize cost while preserving the performance specifications of the overall system. 
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