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One of the inherent problems of multi-limbed mobile robotic systems is the problem of
multi-contact force distribution; the contact forces and moments at the feet required to
support it and those required by its tasks are indeterminate. A new strategy for choosing
an optimal solution for the contact force distribution of multi-limbed robots with three
feet in contact with the environment in three-dimensional space is presented. The incre-
mental strategy of opening up the friction cones is aided by using the “force space
graph” which indicates where the solution is positioned in the solution space to give
insight into the quality of the chosen solution and to provide robustness against distur-
bances. The “margin against slip with contact point priority” approach is also presented
which finds an optimal solution with different priorities given to each foot contact point.
Examples are presented to illustrate certain aspects of the method and ideas for other
optimization criteria are discussed. �DOI: 10.1115/1.2179462�
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1 Introduction
This paper presents a strategy for choosing the optimal force

distribution solution in the given solution space �description of all
the possible solutions� as the second step in finding the optimal set
of foot contact forces for a multi-limbed mobile robotic system in
contact with its environment with three feet contact. Since the
limbs of the robot have enough joints and are actively controlled,
the contact forces at the feet need to be explicitly chosen to ensure
that the robot does not lose its balance and does not slip at the
foot. One of the major difficulties associated with finding the
force distribution solution has been the indeterminate nature of the
problem. Any system with three or more contact points makes it
an underspecified system involving redundancy since there are
more unknowns than the number of equations. The other major
difficulty associated with the problem of multi-contact force dis-
tribution has been the nonlinear nature of the three-dimensional
friction cone model.

2 Background and Previous Work

2.1 Multi-Contact Force Distribution Problem. For a
multi-limbed robot to maintain a stable position on a steep incline
or on rough terrain, there are two key issues that need to be
considered: one is losing balance due to external forces such as
gravity, and the other is the slipping between the feet and the
surface. In other words, all the forces acting on the robot includ-
ing the foot contact forces should satisfy the static equilibrium
equations while, at the same time, each foot contact force should
be in the friction cone at their contact point to avoid slipping.
Thus, the force distribution problem is a statically indeterminate
problem formulated by a set of equality constraints �static force
moment equilibrium equations� and a set of nonlinear inequality
constraints �friction constraints�. The goal is to find the solution
that satisfies these constraints and maximizes the objectives given
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by the optimization criteria.
Most previous work in this area proposed using pseudo inverse

�1,2� and/or various optimization techniques for finding a solution
for a problem formulated as a constrained, optimization problem
using specific objective functions �3–11�. The problem is then
solved by linearizing the friction cone constraints first and then
applying various linear programming techniques. These ap-
proaches were also used for multi-fingered robotic hand grasping
�8,12,13� and multiple robot manipulators working together. How-
ever, these methods were often too slow for real time computation
and were limited in many ways. There were also attempts to find
a suboptimal solution more quickly to make it fast enough for real
time computation �13,14�.

2.2 Two-Step Method. Unlike other methods previously de-
veloped where a single solution to a constrained optimization
problem is immediately found from maximizing an objective
function�s� under constraints, Hong and Cipra �15–17� introduced
a two-step approach in solving the multi-contact force distribution
problem. First, the entire solution space that satisfies all con-
straints is found �finding the solution space�, and then a solution in
that space which will give the best results for the objectives given
by the chosen optimization criteria is chosen as its optimal solu-
tion �choosing the optimal solution�. Finding the description of the
entire solution space first provides an intuitive visual map of how
well the solution space is formed for the given conditions of the
system. This is very important and can be useful for the higher-
level motion planner for deciding on potential foot placement lo-
cations on the surface or for choosing the internal configuration of
the robot �posture� when moving. Choosing a solution in the so-
lution space next will let us see in advance where this solution is
positioned in the solution space to give insight into the quality of
that chosen solution and to provide a measure of robustness
against disturbances, thus will allow us to choose the “best” solu-
tion for the situation.

In �15�, the method developed was applicable only to a climb-
ing tethered mobile robot with a single cable and two feet contact.
In this paper we present a more general method for choosing the
optimal contact force solution in its solution space for multi-

limbed mobile robots with three feet contact as the second step in
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finding the optimal contact force distribution solution. The meth-
ods for both cases are similar in concept, but the method presented
in this paper for the three feet contact case is more general and
thus can also be used for finding the optimal force distribution for
the one cable-two feet contact case as well. The first step of find-
ing the solution space was presented in Hong and Cipra �16–18�.

2.3 Finding the Solution Space. As the first step in finding
the optimal contact force distribution, Hong and Cipra �16–18�
presented a new analytical method for determining, describing,
and visualizing the solution space for the contact force distribu-
tion of multi-limbed robots with three feet in contact with the
environment in three-dimensional space. The “point contact with
friction” model �19� is used where only a normal force and a
tangential force are acting on the contact point �as opposed to the
“soft finger contact” model �20� where the contact point is also
subjected to a moment about the normal.� The foot contact forces
are first resolved into strategically defined foot contact force com-
ponents to decouple them for simplifying the solution process, and
then the static equilibrium equations are applied to find certain
contact force components and the relationship between the others.
Using the friction cone equation at each foot contact point and the
known contact force components, the problem is transformed into
a geometrical one to find the ranges of contact forces and the
relationship between them that satisfy the friction constraint. Us-
ing geometric properties of the friction cones and by simple ma-
nipulation of their conic sections, the entire solution space which
satisfies the static equilibrium and friction constraints at each con-
tact point can be found. Two representation schemes, the “force
space graph” and the “solution volume representation,” are devel-
oped for describing and visualizing the solution space which gives
an intuitive visual map of how well the solution space is formed
for the given conditions of the system. Once the description of the
entire solution space is found, a solution can be chosen in this
solution space next which maximizes the objectives given by the
chosen optimization criteria.

3 Example System and its Solution Space

3.1 Mobile Robotic System. The multi-limbed mobile ro-
botic system under consideration is assumed to move in a quasi-
static manner, by stably supporting itself against the environment
surfaces using its three feet, moving a free limb to a new position
and setting it down while lifting a foot that was in contact with the
surface, and then slowly changing its internal configuration to a
new posture. The ‘three feet contact’ implies that there are only
three feet in contact with the surface at a given time, and thus does
not mean that the robot only has three feet.

To illustrate the method, a robotic system with three feet in
contact with the surface will be used as an example. The param-
eters used to define this example system and the numbers pre-
sented here as results could assume any units as long as they have
the correct dimensions corresponding to its type �force or length�.
Position vectors for the three foot contact points C1, C2, and C3
expressed in, and from the origin of the body coordinate frame are
given as

r̄C1 = �4.0,4.0,− 3.9�

r̄C2 = �− 4.0,4.1,− 4.0�

r̄C3 = �0.0,− 4.0,− 4.1� �1�

and at each foot contact point C1, C2, and C3, the foot contact
coordinate frames are set following the rules defined �Hong and
Cipra �16–18�� using the four unit contact force component vec-
tors e�, e�, e� and e�. The unit surface normal direction vectors
uN1, uN2 and uN3 are given as

¯
uN1 = �− 0.577,− 0.577,0.577�
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ūN2 = �0.667,− 0.333,0.667�

ūN3 = �0.000,0.707,0.707� �2�

and their corresponding friction coefficients �C1, �C2 and �C3 are

�C1 = 0.2, �C2 = 0.32, �C3 = 0.15 �3�

The known external force FO and the known external moment MO
expressed in the body coordinate frame and acting on the origin O
are

F̄O = �0.0,0.1,− 8.0�, M̄O = �2.0,0.1,0.0� �4�

This example system is represented in Fig. 1 with the friction
cones shown at each contact point.

3.2 Solution Space and Force Space Graph. As the first
step, the solution space and its force space graph must be found
using the strategy introduced in Hong and Cipra �16–18�. Among
the nine unknown foot contact force components, three of them
are explicitly found �the e� component forces FC1�, FC2� and
FC3�� by summing the moments about e�, e� and e� unit force
component vectors. For the example system these are found as

FC1� = 1.901, FC2� = 1.876, FC3� = 4.223 �5�

Another three components �FC1�, FC2� and FC3�� are given as
linear relationships to the other three components �FC1�, FC2� and
FC3�� by summing the forces in the e� direction at the three con-
tact points as

FC1� = 0.088 − FC3� �6�

FC2� = − 0.048 − FC1� �7�

FC3� = 0.033 − FC2� �8�

Then, using the presented strategy, the last three components
�FC1�, FC2� and FC3�� are described as possible ranges and con-
straints by reducing the problem into the following set of three
quadratic inequality equations which describes the solution space
of the example system

EC1�FC3�,FC1�� = 0.397FC3�
2 + 0.671FC1�

2 − 0.019FC3�FC1�

− 1.863FC3� − 1.323FC1� + 2.443

Fig. 1 The force system
� 0 �9�
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EC2�FC1�,FC2�� = 0.492FC1�
2 + 0.621FC2�

2 + 0.029FC1�FC2�

− 1.818FC1� − 1.610FC2� + 1.719

� 0 �10�

EC3�FC2�,FC3�� = 0.579FC2�
2 + 0.571FC3�

2 + 0.357FC2�FC3�

− 3.883FC2� − 3.895FC3� + 9.184

� 0 �11�

Any set of forces �FC1�, FC2�, and FC3�� that satisfy this set of
three constraints �EC1, EC2, and EC3� will satisfy all sets of static
equilibrium and friction constraints, and thus is defined as the
solution space. Figure 2 shows the force space graph representa-
tion �16–18� of the solution space described by this set of three
constraints. This representation helps to visualize the three qua-
dratic inequality constraints and the solution space that satisfies
them, and will also be used as a tool for choosing a solution in the
solution space.

Figure 3�a� shows an example of a set of three contact force
components FC1�, FC2�, and FC3� on the force space graph as a
valid solution where points P1, P2, and P3 defined by these three
contact force components are in each of their transformed conic
sections, thus satisfying all constraints. Figure 3�b� shows an ex-
ample of an invalid solution on the force space graph where point
P1 is not inside its transformed conic section EC1�FC3� ,FC1�� and
thus will slip at contact point C1.

Using the strategy presented in Hong and Cipra �16–18�, we
now have a representation of all the combinations of the foot

Fig. 2 The force space graph representation

Fig. 3 Valid/invalid solution on the force space graph „a… a

valid solution, „b… an invalid solution „slip at C1…
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contact force distributions possible that satisfy all static equilib-
rium and friction constraints as the entire solution space. Among
the nine unknown force components, three of them �FC1�, FC2�,
and FC3�� are explicitly specified �Eq. �5��, another three compo-
nents �FC1�, FC2� and FC3�� are given as possible ranges and
constraints by three quadratic inequality equations �Eqs. �9�–�11��
represented by the force space graph, and the last three compo-
nents �FC1�, FC2�, and FC3�� are given as linear relationships to
the other components �Eqs. �6�–�8��. Now choosing a solution set
is a matter of specifying the three contact force component vari-
ables FC1�, FC2� and FC3� that satisfy the three quadratic inequal-
ity equations �Eqs. �9�–�11�� represented by the force space graph,
using the chosen criteria.

4 Choosing the Optimal Solution in the Solution Space
Once the description of the solution space which satisfies the

force moment equilibrium equations and the friction constraints is
found, any solution picked in the solution space will at least guar-
antee that the robot will be in static equilibrium without slipping.
However, it is desirable to choose a solution in that solution space
that best suits the objectives as the optimal solution.

For the three feet contact case, the overall strategy is similar to
that for the “one cable-two feet contact case” �15�; however, the
entire solution space which satisfies the static equilibrium and
friction constraints at each contact point is described in terms of
three parameters instead of one, and thus the strategy for choosing
the optimal solution is more complex.

The force space graph representation of the solution space and
its geometric properties will be used as a tool in choosing the
optimal solution. We first introduce the concept of the margin
against slip criterion and contact point priority and then demon-
strate the method of choosing the optimal solution using the force
space graph using the example system. A discussion of different
possible optimization approaches is presented next.

4.1 Margin Against Slip Criterion With Contact Point
Priority

4.1.1 Margin Against Slip Criterion. Among the many differ-
ent possible optimization criteria, maximizing the margin against
slipping is especially an interesting and potentially useful one
since it can be used to quantify the quality of the chosen solution
and describe the position of that solution in the solution space.
Physically this value could indicate how far the chosen solution is
from the nearest possible solution that will make a foot slip
�boundary of the friction cone�, thus can be used to represent a
solution’s robustness against disturbances and as a measure for
choosing the optimal solution.

We define the margin against slip �NCi� as the ratio of the small-
est angle between the chosen force solution vector and the friction
cone ��Ci−�Ci

* �, over the angle between the friction cone and its
center axis ��Ci� where, for contact point Ci, these are defined by

�Ci = tan−1 �Ci �12�
and

�Ci
* �t� = cos−1� ūNi · F̄Ci�t�

�ūNi��F̄Ci�t��
	 �13�

as shown in Fig. 4. Thus, for contact point Ci, the margin against
slip �NCi� is represented by

NCi�t� = 1 −
�Ci

* �t�
�Ci

�14�

By definition, a margin against slip can only have a value be-
tween 0 and 1. A margin against slip of 1 indicates that the force
solution vector coincides with the center axis of the friction cone
or the surface normal vector ��Ci

* =0�, thus the contact force at this

case is pure normal force with no friction force components. A
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margin against slip of 0 indicates that the chosen force solution
vector is at the boundary of the friction cone ��Ci

* =�Ci� and thus
is at the verge of slipping. When there is a disturbance that causes
any changes in the system, the higher the margin against slip the
better because this would decrease the chances of slipping since
this means that there is a larger “buffer zone” before the contact
force acts outside its friction cone which will cause slipping.

However, unlike the method developed for the one cable-two
feet contact case �Hong and Cipra �15��, we do not use the equa-
tion defining the margin against slip �Eq. �14�� directly to find the
optimal solution, but rather use a different approach while apply-
ing the same concept to choose the optimal solution. Since the
margin against slip for a contact point indicates how far the cho-
sen solution is from the nearest possible solution that will make a
foot slip �boundary of the friction cone�, to maximize this factor is
to find the contact force which is closest to its friction cone center
axis �or the surface normal vector� while still satisfying all con-
straints. In other words, the set of contact forces that satisfy all
constraints with the smallest friction coefficients �narrowest fric-
tion cones� at each contact point would be the optimal solution for
the given system.

Using this idea, we apply an incremental strategy to find the set
of contact forces as the optimal solution: starting from a value of
zero for the friction coefficients for all three contact points, we
check if a solution exists. If no solution exists, we increase the
friction coefficients �open up the friction cones� by a specified
amount for each contact point and check again if a solution exists.

Fig. 4 Defining margin against slip
Fig. 5 Opening up the friction cones „a… PC1
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This process is repeated until a solution is found, or until all three
friction coefficients reach their actual values. The first solution
found in this process would then be the optimal solution following
the margin against slip criteria since �Ci

* would be the smallest
implying that the margin against slip �NCi� is the largest. If no
solution is found in the process, no solution exists for the given
system.

4.1.2 Contact Point Priority. If the rate of opening up the
friction cone ���Ci

* /�Ci� is the same for all three contact points,
then the margin against slip �NCi� found using this strategy would
be the same for all three contact points. However, this rate
���Ci

* /�Ci� of increasing the value of �Ci
* �the rate of opening up

the friction cones� does not need to be the same for each contact
point. Having different rates of friction coefficient increments be-
tween each contact point gives a particular foot contact point a
higher priority over the others. This is similar to the contact point
priority concept developed for the one cable-two feet contact case
�Hong and Cipra �15��. An example would be when one foot
placement point is more critical than the other’s such as when it is
near an edge of a cliff, and would like to make sure that it will not
slip at that point and cause a catastrophic failure. The smaller the
rate of increment of a friction coefficient �the slower the opening
up of a friction cone�, the higher the priority that contact point
gets in finding the optimal solution, since the contact force found
for that contact point would be closer to the center axis of its
friction cone �or the surface normal vector� than the others if a
solution does exist. This opening rate of the friction cone is based
on both its assigned priority �PCi� and its actual friction coeffi-
cient value �Ci �thus, the value of �Ci�. When opening each cone,
the ratio of ��Ci

* �the increment of the intermediate friction cone
angle �Ci

* � to �Ci �the actual friction cone angle� between the three
contact points C1, C2 and C3 is based on

1

PC1
:

1

PC2
:

1

PC3
=

��C1
*

�C1
:
��C2

*

�C2
:
��C3

*

�C3
�15�

where PC1 : PC2 : PC3 is the priority ratio between the three contact
points C1, C2 and C3. Thus when finding the optimal solution, the
“intermediate” friction cone is opened up from the center axis
��Ci

* value of zero� with a cone angle increment ��Ci
* based on its

assigned priority and actual friction cone angle �Ci as shown in
Eq. �15�, until a solution is found or until it reaches its actual
friction cone ��Ci

* reaches the value of �Ci�.
Figure 5 shows the process of opening up the friction cones on

the force space graph for the example system. Figure 5�a� shows
:PC2:PC3=1:1:1, „b… PC1:PC2:PC3=3:1:2
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opening up each friction cone with identical rates for a contact
point priority ratio of 1:1:1 for contact points C1, C2, and C3
�PC1 : PC2 : PC3=1:1 :1� and Fig. 5�b� shows opening up each fric-
tion cone with different rates: the friction cone at contact point C2
is opened up three times the rate of that of contact point C1, and
two times the rate of that of contact point C3, thus applying con-
tact point priority ratio of 3:1:2 for contact points C1, C2 and C3
�PC1 : PC2 : PC3=3:1 :2�.

As the friction cones are being opened up, if one intermediate
friction coefficient �Ci

* reaches it actual value �Ci �its maximum
limit� before the others, then the intermediate friction coefficient
for that particular contact point remains the same while the fric-
tion cones for the other two contact points continue to be opened
up until a solution is found. If this happens, it simply indicates
that that particular contact point cannot satisfy the given contact
point priority requirement, but the strategy continues to search for
a solution that best matches the given contact point priority re-
quirement for the other two contact points. If a solution is found
this way, the contact force at the contact point that reached its
maximum friction coefficient will have a margin against slip value
of zero, indicating that it is at the verge of slipping.

4.2 Checking the Existence of a Solution. To implement the
strategy described above, we need a method for checking the ex-
istence of a solution for a system with a given set of friction
coefficients. Mathematically this task is to verify the existence of
a set of three variables �the three force component variables FC1�,
FC2�, FC3�� that will satisfy the set of three quadratic inequality
equations with two variables each, similar to Eqs. �9�–�11�. This
can also be understood geometrically as checking the existence of
a solution volume �Hong and Cipra �16–18�� as the intersection of
the projections of the three conic sections in three-dimensional
space as shown in Fig. 6. However, there seems to be no easy
analytical way of doing this, and thus an incremental strategy is
presented as a method for checking the existence of a solution.

To check the existence of a solution for a given system with the
specified friction coefficients, first we find the initial range for a
force component variable using the two conic sections that in-
volve this force component variable. Then, starting from one side
of this interval, we check if a solution exists for this value of the
force component variable by computing the range of the other two
force components using the two conic sections, and checking if
there is a set of forces in this range that satisfies the other conic
section inequality constraint. If there is no solution, we increase
the force component variable by a specified amount and repeat the
process until a solution is found or until the end of the range is
reached. If the end of the range is reached without any solutions
found, no solution exists for the given friction coefficients. This

Fig. 6 The solution
process is easier to understand if shown on the force space graph
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as will be presented next using the example system.
For the example system with conic sections EC1, EC2 and EC3,

let us say we want to check if a solution exists with a particular set
of friction coefficients

�C1
* = 0.120, �C2

* = 0.192, �C3
* = 0.090 �16�

where �Ci
* =tan �Ci

* . With these intermediate friction coefficients,
the three conic sections EC1

* , EC2
* , and EC3

* are found as

EC1
* �FC3�,FC1�� = 0.412FC3�

2 + 0.679FC1�
2 + 0.003FC3�FC1�

− 1.821FC3� − 1.292FC1� + 2.472

� 0 �17�

EC2
* �FC1�,FC2�� = 0.522FC1�

2 + 0.643FC2�
2 + 0.081FC1�FC2�

− 1.705FC1� − 1.512FC2� + 1.827

� 0 �18�

EC3
* �FC2�,FC3�� = 0.585FC2�

2 + 0.577FC3�
2 + 0.369FC2�FC3�

− 3.829FC2� − 3.840FC3� + 9.306 � 0 �19�

which are shown on the force space graph in Fig. 7. The super-
script “ *” in the notation for the friction coefficients and the conic
sections shown above indicates that these values and equations are
not for the original friction cones of the system, but rather for the
intermediate friction cones that are being opened up correspond-
ing to �Ci

* , the intermediate friction coefficient for contact point
Ci.

Choosing FC1� as the force component variable �any of the
three force components FC1�, FC2�, or FC3� can be chosen� we
first find the initial range for FC1� using the two conic sections
EC1

* and EC2
* �Eqs. �18� and �19�� which both have FC1� as one of

its variables. Graphically, this initial range is the common range
between the two projections of each conic section EC1

* and EC2
* on

the FC1� axis as shown in Fig. 7. This interval found for FC1� is
bounded by its minimum and maximum values as �FC1��min

*

�FC1�� �FC1��max
* , where

�FC1��max
* = 1.419, �FC1��min

* = 0.779 �20�

Note that if both conic sections are not ellipses, circles, or points
�the case when the conic sections are one of hyperbolas, parabo-
las, lines, or two non-parallel lines�, the projection of the conic
sections can have open intervals and thus the interval of FC1� may
not be bounded on both sides. In such cases, a bound that limits
the magnitude of that force must be specified.

Once the interval for FC1� is found, we vary the value of FC1�

lume representation
in this interval and check if a solution exists. Starting from one
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side of the interval, say �FC1��min
* , we check if a solution exists by

computing the ranges for the other two force components FC2�

and FC3� for the current FC1� value using Eqs. �17� and �18�, and
check if there is a set of values for FC2� and FC3� in these ranges
that also satisfies the EC3

* conic section inequality equation �Eq.
�19��.

Figure 8 shows this process of checking the existence of a
solution for a value of FC1� in its interval. The ranges for the two
force components FC2� and FC3� are represented as a parallelo-
gram on the force space graph as shown in Fig. 8. For this par-
ticular FC1� value, the �FC2� ,FC3�� parallelogram does not inter-
sect with the conic section EC3

* , and thus no solution exists for this
FC1� value.

This process is continued until a solution �intersection between

Fig. 7 Finding the initial range for FC1� Using EC1
* and EC2

*

Fig. 8 The FC2�, FC3� range as a parallelogram „FC1�=0.907, no

solution…

Journal of Mechanical Design
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the �FC2� ,FC3�� parallelogram and the conic section EC3
* � is

found, or until the end of the FC1� interval is reached. For this
example system, a solution is found before the end of the FC1�
interval is reached, and this first intersection between the paral-
lelogram and the conic section is shown in Fig. 9. At this instant,
the value for the force component variable FC1� and the FC2�,
FC3� coordinates of this first intersection point are found as

FC1� = 1.211, FC2� = 1.721, FC3� = 2.678 �21�
and thus a solution exists.

4.3 Optimal Solution. The particular set of three friction co-
efficients used above �Eq. �16�� to illustrate the strategy for check-
ing the existence of a solution which produced the three conic
sections EC1

* , EC2
* , and EC3

* �Eqs. �17�–�19��, is actually the set of
three friction coefficients corresponding to when the first solution
was found as the friction coefficients were being increased for the
example system using a priority ratio of 1:1:1. Thus the FC2�,
FC3� coordinates of this first intersection point together with the
value of FC1� at this instant �Eq. �21�� as shown in Fig. 9, are the
only solution for this particular set of friction coefficients and thus
form the three force component values for the optimal solution
using the margin against slip criteria. Note that there are other
solutions if the friction cones are continued to be opened, but the
optimal solution set is the one that is found first which guarantees
the smallest friction cone openings, thus highest margin against
slip values. This set of three force components is shown on the
force space graph in Fig. 10. From these three force component
variables FC1�, FC2�, and FC3� that optimize the contact forces
�Eq. �21��, and the three linear relationships previously found by
summing the forces in the e� direction at the three contact points
�Eqs. �6�–�8�� we can find the remaining three force components
FC2�, FC3�, and FC1� as

FC2� = − 1.259, FC3� = − 1.688, FC1� = − 2.590 �22�

With the e� component forces previously found by summing the
moments about e�, e� and e� �Eq. �5�� we have now found all
force components that completely describe all contact forces that
not only satisfy the static equilibrium conditions and the friction

Fig. 9 The first intersection between the „FC2�, FC3�… parallelo-
gram and the conic section EC3

*
„FC1�=1.211…
constraints, but also optimize the contact force distribution fol-
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lowing the margin against slip criteria with contact point priority.
Expressing these foot contact forces with respect to the Carte-

sian X-Y-Z body coordinate frame, the final optimal force distri-
bution is found as

F̄C1 = �− 2.393,− 2.336,1.827�

F̄C2 = �1.997,− 1.594,1.872�

F̄C3 = �0.396,3.830,4.300� �23�
This final optimal force solution is shown to scale in Fig. 11.

The margin against slip �NCi� at each contact point for the three
feet contact case is defined as one minus the ratio of �Ci

* to �Ci

Fig. 10 Optimal solution shown in the force space graph
Fig. 11 The optimal solution „margin against slip criteria…
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where �Ci
* is the friction cone angle when the first solution is

found and �Ci is the actual friction cone angle. This can also be
expressed in terms of the coefficient of friction which is the tan-
gent of the friction cone angle, and hence

NCi = 1 −
�Ci

*

�Ci
= 1 −

tan−1 �Ci
*

tan−1 �Ci
�24�

Using this expression, the margin against slip for each foot contact
point is found as

NC1 = 0.395, NC2 = 0.388, NC3 = 0.397 �25�

which are the largest possible values obtainable whose priority
ratio is close to 1:1:1.

5 Other Optimization Criteria and Approaches
In this paper, we have presented the strategy for finding the

optimal solution using the margin against slip with contact point
priority criteria for its simplicity and usefulness. However, there
can be many other possible ideas for different optimization criteria
where each of them would have different uses for different situa-
tions with their own geometrical interpretations that would give
other useful insights and information for the system.

One potentially useful strategy for choosing the optimal solu-
tion is to use the “solution volume” representation �Hong and
Cipra16–18�. The solution volume is defined as the volume created
by the intersection of the projections of the three conic sections
�EC1, EC2, and EC3� in three-dimensional space as shown in Fig. 6.
Any point defined by the three contact force components that is in
this solution volume is a solution that satisfies all static equilib-
rium and friction constraints. One way of using the solution vol-
ume for choosing the optimal solution would be to choose the
“center point” of the solution volume. This center point would
then be the point furthest from the boundaries of its solution
space, providing the maximum safety margin against failure in all
directions. However, the location of this optimal point would de-
pend on the definition for the center we choose to use.

One way of defining the center point for the solution volume
may be to fit the maximum size sphere in the three-dimensional
solution volume and to define the center to be the center point of
the solution space. The size of this sphere, which is defined by its
radius, can then be used as a parameter to indicate the quality of
its solution space �the larger the radius the better the solution
space�. A new definition of a margin against slip can be used for
such a case where it is defined as one minus the ratio of the
distance of the chosen solution to the center point, over the radius
of the sphere. Using this new definition, this factor would have a
value between one and zero, where the optimal point would al-
ways have a value of one, and a solution point on the surface of
the sphere would have a value of zero �even though it might not
be at the verge of failure�.

Another way to implement this idea may be to fit a rectangular
parallelepiped volume with a certain length to height to width
ratio inside the solution volume, instead of a sphere. This length to
height to width “priority ratio” for this “box” may be used to
implement a concept similar to the idea of contact point priority.

Instead of using a rectangular parallelepiped inside the solution
volume with varying length, height, width ratios, an easier way
might be to define the smallest rectangular parallelepiped box
which inscribes the solution volume. This box would then have an
easy to compute predetermined length, height, width ratio. The
center point of this box �a point defined using the midpoint of the
length, height, and width of the box� may be chosen as the optimal
solution for the system. This method may computationally be the
easiest and fastest way to choose a solution, however, it is not an
accurate way to define the optimal solution. However, in certain
situations, this strategy may still be a useful method for choosing

a “good enough” solution quickly.
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6 Summary and Conclusion
In this paper, we have presented a method for choosing the

optimal force distribution solution in the solution space for the
three feet contact case. Using the ‘force space graph’ representa-
tion scheme as a tool, the optimal solution is chosen by selecting
the values for the three parameters that define the solution. The
margin against slip criteria with contact point priority was pre-
sented and a strategy of opening up the friction cones while
checking the existence of a solution was developed to implement
the choosing of the optimal solution. Discussions of the geometric
interpretation of the procedure and results were presented using an
example to provide insight into the complex interaction of the
contact force components and to visually give insight into the
physical meanings of the parameters involved. Other ideas for
optimization criteria based on the solution volume representation
were discussed. Future research areas may include developing
other concepts for the optimization criteria and developing strat-
egies to implement them in choosing the optimal solution.
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