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Abstract— Bipedal humanoid robots are inherently unstable
to external perturbations, especially when they are walking
on uneven terrain in the presence of unforeseen collisions.
In this paper, we present a push recovery controller for
position-controlled humanoid robots which is tightly integrated
with an omnidirectional walk controller. The high level push
recovery controller learns to integrate three biomechanically
motivated push recovery strategies with a zero moment point
based omnidirectional walk controller. Reinforcement learning
is used to map the robot walking state, consisting of foot
configuration and onboard sensory information, to the best
combination of the three biomechanical responses needed to
reject external perturbations. Experimental results show how
this online method can stabilize an inexpensive, commercially-
available DARwin-OP small humanoid robot.

Keywords: Bipedal Omnidirectional Walking, Full Body
Push Recovery, Reinforcement Learning, Online Learning

I. INTRODUCTION

Due to their small footprint and high center of mass,
bipedal humanoid robots are not statically stable. Open loop
dynamic walking methods typically assume flat, well-defined
surfaces for walking that ensure the pre-defined joint trajec-
tories exhibit dynamic stability. However, these techniques
can fail due to unevenness of the surface, collisions with
obstacles, and unknown modeling errors of the robot or
its actuators. Active stabilization is therefore crucial for
operation of humanoid robots in realistic environments, and
has been a topic of great interest in humanoid research.

There have been two main approaches proposed to handle
active stabilization of humanoid robots. The first approach
uses sensitive force sensors and an accurate full body model
of the robot to calculate the proper joint torques required
to reject any external disturbance forces [1], [2], [3], [4],
[5]. The other is a biomechanically motived approach which
focuses on fast, reactive push recovery behaviors using a
simplified model of the robot [6], [7], [8], [9], [10], [11],
[12].

One common drawback of these approaches is that most
physical implementations require specialized hardware such
as triaxial force and torque sensors, torque-controlled actua-
tors, in addition to rapid computational processing and feed-
back control, making their implementation on inexpensive,
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Fig. 1. Overview of the omnidirectional walk controller integrated with
full body push recovery controller.

commercially-available, position-controlled humanoid robots
such as the Nao1 or DARwIn-OP2 infeasible.

In previous work, we described a machine learning ap-
proach to learn a hierarchical full body push recovery
controller for such hardware constrained humanoid robots
[13]. In this paper, we address several shortcomings of the
prior work. The first issue is that our previous work, along
with most other humanoid push recovery implementations,
assumes that the robot is either standing still or walking in
place, and does not address more general situations when the
robot is walking with nonzero velocity. The second issue is
that a simulator was used to learn the controller, like other
approaches utilizing machine learning [4], [5], which may
not correctly model the robot and environmental properties.

Thus, the aim of this work is twofold. The first is to design
an integrated walk controller with push recovery for position-
controlled humanoid robots without force sensors that can
stabilize the robot against external disturbances during om-
nidirectional walking. The second is to use the physical
robot and experimental apparatus instead of a simulated
environment to learn the push recovery controller parameters
in an online fashion.

We first design a step-based omnidirectional walk con-
troller that integrates with the biomechanically motivated
push recovery controllers. Our method generates foot and

1http://www.aldebaran-robotics.com/
2http://www.robotis.com/xe/darwin_en
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torso trajectories in real time based upon dynamic stability
criteria, which can be switched to reject external perturba-
tions. The current foot configuration and walking phase are
taken into consideration to determine the control inputs for
push recovery controllers. The robot is then used in conjunc-
tion with a motorized moving platform to apply a series of
controlled perturbations to the robot. The parameters for the
hierarchical controller are then learned in an online fashion
using reinforcement learning. Experimental results show that
our method can be successfully applied to the DARwin-OP
robot platform.

The remainder of the paper proceeds as follows. Section
II reviews three biomechanically motivated push recovery
controllers and its implementation on position controlled
humanoid robots. Section III explains the details of the step-
based omnidirectional walk controller which is fully inte-
grated with the push recovery controller. Section IV explains
how the DARwIn-OP robot is used to learn the appropriate
controller from experience in an online fashion. Section V
shows the experimental results using the learned controller.
Finally, we conclude with a discussion of outstanding issues
and potential future directions arising from this work.

II. BIOMECHANICALLY MOTIVATED PUSH RECOVERY
CONTROL FOR POSITION CONTROLLED ROBOTS

Biomechanical studies show that humans display three
distinctive motion patterns in response to sudden external
perturbations: which we denote as ankle, hip and step push
recovery strategies [7]. Although there has been some the-
oretical analysis of these strategies using simplified mod-
els, physical implementation of such analytical controllers
on a generic, position controlled humanoid robot is not
straightforward, and there has been little research on how
to optimally mix these three strategies as humans do.

Instead of fully relying on analytic models, we suggested
a machine learning approach to determine the appropriate
push recovery controller which minimizes a predetermined
cost function [14]. To generate the proper combination of
push recovery strategies, a hierarchical high level controller
uses current proprioceptive and inertial sensory information
to determine the optimal combination of the three recovery
strategies. In this section, we review the implementation
of the three biomechanically motivated push recovery con-
trollers on a position controlled robot, as shown in Figure
2.

A. Ankle push recovery

The ankle controller applies control torque on the ankle
joints to keep the center of mass within the base of support.
For position controlled actuators, controlling the ankle torque
can be done by either controlling the auxiliary zero moment
point (ZMP) which accelerates the torso to apply effective
torque at ankle [13], [15] or modulating the target angle of
the ankle servo. In this work we use the latter method, which
is found to be effective for the particular robot we use in our
experiments. Then the controller can be simply implemented

(a)

(b)

(c)

Fig. 2. Three biomechanically motivated push recovery strategies and
corresponding controller for a position-controlled robot. (a) Ankle strategy
that applies control torque on ankle joints. (b) Hip strategy which uses
angular acceleration of torso and limbs to apply counteractive ground
reaction force. (c) Step strategy which moves the base of support to a new
position.

as

∆θankle = xankle (1)

where ∆θankle is the joint angle bias and xankle is the original
ankle controller input. In addition to the ankle joints, we also
modulate arm position to apply additional effective torque at
the ankles in a similar way, unless overridden by the hip
controller.

B. Hip push recovery

The hip controller uses angular acceleration of the torso
and limbs to generate a backward ground reaction force to
pull the center of mass back towards the base of support. For
maximum effect, a bang-bang profile of the following form
can be used

τhip(t) = τmaxu(t)−2τmaxu(t−TR1)+ τmaxu(t−TR2) (2)
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where u(t) is the unit step function, τmax is the maximum
torque that the joint can apply, TR1 is the time the torso stops
accelerating and TR2 is the time torso comes to a stop. After
TR2, the torso angle should return to the initial position. This
two-stage control scheme can be approximately implemented
with position controlled actuators as

∆θtorso =

{
xhip 0≤ t < TR2

xhip
TR3−t

TR3−TR2
TR2 ≤ t < TR3

(3)

where ∆θtorso is the torso pose bias, TR3 the time torso angle
completes returning to initial position, and xhip is the input
of hip controller. Arm rotation can also be used during hip
push recovery to apply additional ground reaction force on
the robot.

C. Step push recovery

The step controller effectively moves the base of support
by taking a step. This is implemented by overriding the
step controller to insert a new step with relative target foot
position xcapture. In order to not lift the current support foot,
the state of the robot needs to be monitored to determine
the current foot configuration as well as the perturbation
direction. Only during the appropriate walking phase is the
walk control overridden with the new target foot position.

III. A STEP-BASED OMNIDIRECTIONAL WALK
CONTROLLER WITH PUSH RECOVERY CONTROL

In this section, we describe the details of our omnidi-
rectional walk controller which is integrated with the full
body push recovery controller. As the active push recovery
requires walk phase modulation and real-time modification
of landing position, we cannot directly use a typical periodic
time-based walk controller. Instead, we use a step-based walk
controller that generates a series of steps with individual
adjustable parameters such as duration, support foot selection
and landing position. The overall walk control is separated
into a step controller and trajectory controller, where the
step controller determines the parameters for each step and
the trajectory controller generates foot and torso position
trajectories based upon that information. In this section
we cover each controller in detail, and show how they
are integrated with the high level push recovery controller
described in the previous section.

A. Step controller

The step controller determines the parameters of each step,
which is defined as

ST EPi = {SF,WT, tST EP,Li,Ti,Ri,L1+1,Ti+1,Ri+1} (4)

where SF denotes the support foot, WT denotes the type of
the step, tST EP is the duration of the step, and Li,Ti,Ri, and
Li+1,Ti+1,Ri+1 are the initial and final 2D poses of left foot,
torso and right foot in (x,y,θ) coordinate. Li,Ti,Ri are deter-
mined by the final feet and torso poses from the last step, and
Li+11,Ri+1 is calculated using the command walk velocity
and current foot configuration to enable omnidirectional
walking. Foot reachability and self-collision constraints are

(a) (b)

Fig. 3. The step-based walk controller. (a) An example of walking behavior
which is composed of two steps, ST EPi and ST EPi+1. (b) Corresponging
ZMP and torso trajectory p and x. Timing parameters of φ1 = 0.2 and
φ2 = 0.8 are used.

also taken into account when calculating target foot poses.
Target torso pose Ti+1 is set to the middle point of Li+1 and
Ri+1 by default, so that the transition occurs at the most
stable posture where the center of mass (CoM) lies on the
midpoint of the two support positions.

Once we have the initial and final poses of the feet and
torso, we can define the reference ZMP trajectory pi(φ) as
the following piecewise-linear function for the left support
case

pi(φ) =


Ti(1− φ

φ1
)+Li

φ

φ1
0≤ φ < φ1

Li φ1 ≤ φ < φ2

Ti+1(1− 1−φ

1−φ2
)+Li

1−φ

1−φ2
φ2 ≤ φ < 1

(5)

or for the right support case

pi(φ) =


Ti(1− φ

φ1
)+Ri

φ

φ1
0≤ φ < φ1

Ri φ1 ≤ φ < φ2

Ti+1(1− 1−φ

1−φ2
)+Ri

1−φ

1−φ2
φ2 ≤ φ < 1

(6)

where φ is the walk phase and φ1,φ2 are the timing param-
eters determining the transition between single support and
double support phase.

Finally, the step controller allows for inter-step override
from the push recovery controller. The hip and step push
recovery controller can temporarily stop the walking to
stabilize the robot after each push recovery behavior is
initiated, and the step push recovery controller can initiate a
special capture step to reject large perturbations. The walk
type parameter WT is used to describe these special types
of steps.

B. Trajectory controller

The trajectory controller generates foot and torso trajec-
tories for the current step defined in (4). First we define the
single support walk phase φsingle as

φsingle =


0 0≤ φ < φ1
φ−φ1
φ2−φ1

φ1 ≤ φ < φ2

1 φ2 ≤ φ < 1
(7)
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then we use following parameterized trajectory function

fx(φ) = φ
α +βφ(1−φ) (8)

to generate the foot trajectories

Li(φsingle) = Li+1 fx(φsingle)+Li(1− fx(φsingle)) (9)

Ri(φsingle) = Ri+1 fx(φsingle)+Ri(1− fx(φsingle)) (10)

The torso trajectory xi(t) is calculated according to the
following ZMP criterion for a linear inverted pendulum
model

p = x− tZMPẍ (11)

The piecewise linear ZMP trajectory we use in (5), (6) yields
for xi(φ) with zero ZMP error during the step period

xi(φ)=



pi(φ)+ap
i eφ/φZMP +an

i e−φ/φZMP

−φZMPmi sinh φ−φ1
φZMP

0≤ φ < φ1

pi(φ)+ap
i eφ/φZMP +an

i e−φ/φZMP

φ1 ≤ φ < φ2

pi(φ)+ap
i eφ/φZMP +an

i e−φ/φZMP

−φZMPni sinh φ−φ2
φZMP

φ2 ≤ φ < 1
(12)

where φZMP = tZMP/tST EP and mi, ni are ZMP slopes which
are defined as follows for the left support case

mi = (Li−Ti)/φ1 (13)

ni =−(Li−Ti+1)/(1−φ2) (14)

and for the right support case

mi = (Ri−Ti)/φ1 (15)

ni =−(Ri−Ti+1)/(1−φ2) (16)

Then the parameters ap
i and an

i can be uniquely determined
by the boundary condition xi(0) = Ti and xi(1) = Ti+1. This
analytic solution has zero ZMP error during the step period
but discontinuous jerk at the transitions. However, as this
transition occurs in the middle of the most stable double
support stance, we found this does not hamper stability.

In addition to calculating foot trajectories based upon
predetermined target foot poses, the intra-step override from
the push recovery controller can also modify the foot landing
position while stepping. When the step push recovery is
triggered during the initial phase of walking, the target
landing position is overridden and a new foot trajectory
is generated under foot reachability constraints and foot
maximum velocity constraints.

C. Push recovery controller

The push recovery controller consists of three low level
biomechanically motivated push recovery strategies and a
high level controller that generates the control inputs for
them based on sensory feedback and current state informa-
tion. There is no closed-form analytic solution for combining
the individual low level controllers, so we use a machine-
learning approach that trains the overall controller to opti-
mize a cost function from experience. We formalize the high

level controller as a reinforcement learning problem with the
following state

S =
{

θIMU ,θgyro,θ f oot ,φ ,FD,HCS
}

(17)

where θIMU and θgyro are the torso pose and gyroscope
data from inertial sensors, θ f oot is the support foot pose
calculated using forward kinematics and onboard sensors,
φ is the walk phase, FD is the foot displacement, and HCS
is the hip controller state. The learned action is defined as
the combined inputs for the three low level controllers

A =
{

xankle,xhip,xcapture
}

(18)

and the reward is defined as

R =
∣∣θgyro

∣∣2 + g
z0
|θIMU |2 (19)

where g is the gravitational constant and z0 is the COM
height.

IV. ONLINE LEARNING OF THE PUSH RECOVERY
CONTROLLER

We have implemented the integrated walk controller with
push recovery on a commercially available small humanoid
robot and trained the controller in an online fashion. In this
section, we present the details of the learning setup.

A. Hardware setup

We use the commercially available DARwIn-OP humanoid
robot developed by Robotis Co., Ltd. and the RoMeLa
laboratory. It is 45 cm tall, weighs 2.8kg, and has 20 degrees
of freedom. It has a USB camera for visual feedback, and 3-
axis accelerometer and 3-axis gyroscope for inertial sensing.
Position-controlled Dynamixel servos are used for actuators,
which are controlled by a custom microcontroller connected
by an Intel Atom-based embedded PC at a control frequency
of 100Hz.

To generate repeatable external perturbations, a motorized
moving platform was constructed using Dynamixel servo-
motors. The motorized platform is attached to the same bus
connecting the actuators of the robot, and controlled by the
same I/O process. To generate maximum peak acceleration,
the platform is slowly accelerated in one direction and
then suddenly accelerated in the opposite direction. We
have found the platform can generate accelerations greater
than 0.5g while carrying the robot, providing large enough
perturbations to make the robot fall.

B. Learning setup

In previous work [13], a policy gradient reinforcement
learning algorithm was used to learn the push recovery
controller in a simulated environment. However, the same
approach cannot be directly applied to the physical robot
for online learning. The main issue with machine learn-
ing approaches on physical robots is that the amount of
training data is severely restricted. Unlike in simulation,
small humanoid robots cannot continuously operate for long
periods of time due to heat buildup at the actuators, and the
process of gathering training data is slower and may require
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(a)

(b) (c)

Fig. 4. (a) Learning setup including the servo controlled platform connected
to the DARwIn-OP robot. (b) Commanded position of the platform to induce
instantaneous disturbance. (c) Actual acceleration of the platform.

more human intervention. Also, the sensory noise present in
physical experiments are not well-modeled in simulations.

To overcome these problems, we simplify the reinforce-
ment learning formulation of the high level controller as
follows. First we use the heuristic disturbance variable θd
as a single continuous state variable which is defined as

θd = s(θIMU + kgyroθgyro) (20)

where s is a moving average smoothing function and kgyro is
a heuristic mixing parameter. The rest of the state variables
are discretized to form the discrete state variables

Sd =
{

φ̂ , ˆFD, ˆHCS
}
. (21)

Simple parametric functions with preset parameters kankle,
khip, kstep are then used to describe the possible controller
actions:

xankle =

 0 |θd |< θ T H
ankle(Sd)

kankle(θd−θ DB
ankle(Sd)) θd ≤−θ T H

ankle(Sd)
kankle(θd +θ DB

ankle(Sd)) θd ≥ θ T H
ankle(Sd)

(22)

xhip =


0 |θd |< θ T H

hip (Sd)

−khip θd ≤−θ T H
hip (Sd)

khip θd ≥ θ T H
hip (Sd)

(23)

xcapture =


0 |θd |< θ T H

step(Sd)
−kstep θd ≤−θ T H

step(Sd)
kstep θd ≥ θ T H

step(Sd)
(24)

Finally, to reduce the effects of incorrect actions during
normal walking, a negative training set is generated by
letting the robot walk without any external perturbations on
the platform to prevent the controller from learning overly
sensitive corrections.

(a) (b)

Fig. 5. Learning process of the push recovery controller. (a) Initial
parameter set which does not trigger hip strategy. (b) Learned parameter set
after training that triggers hip strategy when large amount of disturbance is
applied. The same amount of disturbance is applied to the robot.

V. EXPERIMENTAL RESULTS

A. Learning the push recovery controller

We trained the push recovery controller using the servo
controlled platform. The robot is set to walk in different
directions, and a platform movement is triggered at different
phases of the walking. Then the robot is repositioned by the
human operator to start a new trial. Each trial takes roughly
10 seconds on average, and 20 trials are done per episode
to improve the controller. Figure 5 shows a comparison of
the robot behavior before and after 20 episodes of training
with the same amount of perturbation. We can see that the
robot learns to apply the appropriate push recovery behavior
to reject large perturbations during walking.

B. Testing the push recovery controller

We let the robot with learned controller freely walk over
a flat surface and applied a number of pushes with various
directions and magnitude. Figure 6 shows some examples of
robot response against external disturbances3. We see that the
learned controller can successfully trigger appropriate push
recovery behaviors to keep the omnidirectionally walking
robot from falling down.

VI. CONCLUSIONS

We have demonstrated an integrated controller that enables
full body push recovery during omnidirectional walking

3http://www.youtube.com/watch?v=N5Sh407Mqjg
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(a)

(b)

(c)

(d)

(e)

(f)

Fig. 6. Responses of the learned push recovery controller against per-
turbation during omnidirectional walking. (a) step strategy during walking
forward. (b) step strategy during sidestepping. (c) hip strategy during
walking forward. (d) hip strategy during turning. (e) hip and step strategies
during walking forward. (f) hip and step strategies during sidestepping.

for humanoid robots without specialized sensors and ac-
tuators. Three low level biomechanically motivated push
recovery strategies are implemented on a position controlled
humanoid robot, and integrated with a non-periodic, step-
based omnidirectional walk controller. The proper parameters
for the hierarchical controller are learned online using a
commercially-available small humanoid robot along with a
servo-controlled moving platform. Experimental results show
that the trained controller can successfully initiate a full body
push recovery behavior under external perturbations while
walking in an arbitrary direction.

Possible future work includes incorporating more sophisti-
cated learning algorithms to utilize the limited training data,
and implementing these algorithms on full-size humanoid
robots.
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