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Abstract. The DARPA Urban Challenge required robotic vehicles to travel over 90km 
through an urban environment without human intervention and included situations such as 
stop intersections, traffic merges, parking, and road blocks. Team VictorTango separated 
the problem into three parts: base vehicle, perception, and planning. A Ford Escape 
outfitted with a custom drive-by-wire system and computers formed the basis for Odin. 
Perception used laser scanners, GPS, and a priori knowledge to identify obstacles, cars, and 
roads. Planning relied on a hybrid deliberative/reactive architecture to analyze the situation, 
select the appropriate behavior, and plan a safe path. All vehicle modules communicated 
using the JAUS standard. The performance of these components in the Urban Challenge is 
discussed and successes noted. The result of VictorTango’s work was successful 
completion of the Urban Challenge and a third place finish. 

1   Introduction 

On November 3rd, 2007, DARPA hosted the Urban Challenge, an autonomous 
ground vehicle competition in an urban environment. To meet this challenge, 
Virginia Tech and TORC Technologies formed team VictorTango, a collaborative 
effort between academia and industry. The team includes 46 undergraduate 
students, 8 graduate students, 4 faculty members, 5 full time TORC employees 
and industry partners, including Ford Motor Co. and Caterpillar, Inc. Together 
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team VictorTango and its partners developed Odin, a 2005 Ford Hybrid Escape 
modified for autonomous operation. 

In the weeks prior to competition, 35 teams prepared for the National 
Qualifying Event (NQE). Vehicles had to navigate various courses, merge with 
traffic, navigate cluttered roads and zones, park in full parking lots, and detect 
road blocks. After a rigorous qualifying event, only 11 teams were deemed ready 
by DARPA to line up in the start chutes of the final Urban Challenge Event 
(UCE). The vehicles had to navigate similar situations to those they encountered 
during the NQE. However, each vehicle also had to share the road with the other 
10 autonomous vehicles, 10 chase vehicles, and 50 human-driven traffic vehicles. 
Six of the eleven vehicles finished the race. This paper provides a summary of the 
approach, final configurations, successes, and incidents of the third place team, 
VictorTango. 

1.1   VictorTango Overview 

Team VictorTango divided the problem posed by the Urban Challenge into three 
major parts: base vehicle platform, perception, and planning. Each of these 
sections was then subdivided into distinct components for parallel development. 
Team members were able to split up the required tasks, execute and debug them 
individually, and provide finished components for full system testing. This 
modular approach provided the rapid development time needed to complete a 
project of such magnitude in only 14 months. This section provides a description 
of the components that constitute the team’s approach. 

1.2   Base Vehicle Platform 

Team VictorTango’s entry in the Urban Challenge is a modified 2005 Hybrid Ford 
Escape named Odin, shown in Figure 1. This base vehicle platform meets the 
DARPA requirement of a midsize commercial automobile with a proven safety 
record. The use of the hybrid-electric Ford Escape provides numerous advantages 
in the areas of on-board power generation, reliability, safety and autonomous 
operation. As required by DARPA, the drive-by-wire conversion does not bypass 
any of the OEM safety systems. Since the stock steering, shifting and throttle 
systems on the Hybrid Escape are already drive-by-wire, these systems can be 
controlled electronically by emulating the command signals, eliminating the 
complexity and failure potential associated with the addition of external actuators. 
The stock hybrid power system is able to provide sufficient power for sensors and 
computers without the need for a separate generator.  

Odin’s main computing is supplied by a pair of Hewlett-Packard servers each 
of which are equipped with two quad-core processors. One of the servers runs 
Microsoft Windows XP and is dedicated to sensor processing. Windows was 
selected since some of the sensor processing software uses National Instruments’ 
LabVIEW Vision development module, requiring Windows. The other server runs 
Linux and is further subdivided into four virtual machines for process load 
balancing and isolation. The Linux system, selected for its configurability and  
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Fig. 1. External view of Odin with sensors labeled 

stability, runs all of the decision making and planning modules. The vehicle 
hardware is controlled by a National Instruments CompactRIO unit, which 
contains a real-time capable OS and an FPGA. The primary communications 
backbone is provided by a gigabit Ethernet network. 

1.3   Perception 

To fulfill the behavioral requirements of the Urban Challenge, Odin must first be 
able to adequately localize its position and perceive the surrounding environment. 
Since there may be sparse waypoints in an RNDF and areas of poor GPS 
coverage, the surrounding road coverage and legal lanes of travel must also be 
sensed. Finally, Odin must be able to perceive all obstacles in its path and 
appropriately classify obstacles as vehicles. 

For each perception requirement, multiple sensors are desirable to achieve the 
highest levels of fidelity and reliability. To allow for maximum flexibility in 
sensor fusion, the planning software does not use any raw sensor data; rather it 
uses a set of sensor-independent perception messages. The perception components 
and the resulting messages are shown in Figure 2. The Localization component 
determines the vehicle position and orientation in the world. The Road Detection 
component determines a road coverage map as well as the position of each lane in 
nearby segments. The Object Classification component detects obstacles and 
classifies them as either static or dynamic. A dynamic obstacle is any obstacle that 
is capable of movement, so a stopped vehicle would be classified as a dynamic 
obstacle with zero forward velocity. 
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Fig. 2. Perception structure overview 

1.4   Planning 

The planning software on Odin uses a Hybrid Deliberative-Reactive model 
dividing upper level decisions and lower level reactions into separate components. 
These components run concurrently at independent rates, allowing the vehicle to 
react to emergency situations without needing to re-plan an entire route. Splitting 
the decision making into separate components also allows each system to be tested 
independently and fosters parallel development, which is especially attractive 
given the short development timeline of the DARPA Urban Challenge.  

 

Fig. 3. Planning structure overview 
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The Route Planner component is the coarsest level of planning and is 
responsible for determining which road segments and zones the vehicle should use 
to travel to all checkpoints. The Driving Behaviors component is responsible for 
obeying the rules of the road and guiding the vehicle along the planned route. The 
lowest level of the planning process is the Motion Planning component, which 
determines the path and speed of Odin. Motion commands are then passed to the 
Vehicle Interface to be translated into actuator control signals. An overview of the 
planning process is shown in Figure 3.  

2   Technical Approach 

This section presents an overview of the major design choices made in the 
development of Odin, focusing on perception and planning systems. In each of 
these sections, an overview of the system function is given as well as the design of 
key elements. 

2.1   System Architecture and Communications 

While previous Grand Challenges could be solved using a purely reactive software 
architecture, the complex nature of the Urban Challenge necessitates a hybrid 
solution. In addition to the simpler goal-seeking behavior required in the previous 
challenges, Urban Challenge vehicles must maintain knowledge of intent, 
precedence, and timing. With many concurrent perception and planning tasks of 
varying complexity, priority, and computation time, parallelism is preferred to a 
single monolithic Sense-Plan-Act structure (Murphy, 2000).  In addition, the 
complexity of the Urban Challenge problem necessitates a well-defined software 
architecture that is modular, clearly segmented, robust, safe, and simple. 

VictorTango’s software structure employs a novel Hybrid Deliberative-
Reactive paradigm. Odin’s perception, planning, and acting occur at several levels 
and in parallel tasks, acting on the most recent information received from other 
modules. With traditional Hybrid architectures, deliberative components are 
usually kept at a high level, while the more reactive, behavior-based, components 
are used at a low-level for direct actuator control (Konolige, 1998 and Rosenblatt, 
1995). With the rapid growth of computing technology, however, there has been a 
re-emergence of deliberative methods for low-level motion planning (Urmson, 
2006, and Thrun, 2006).  Search-based approaches provide the important traits  
of predictability and optimality, which are useful from an engineering point of 
view (Russel, 2003). VictorTango’s system architecture therefore exhibits a 
deliberative-reactive-deliberative progression.  As a result, the scope of a 
behavioral control component can be moved from low-level reflexes to higher-
level decision making for solving complex, temporal problems.  An overview of 
the hybrid mixture of deliberative planning, reactive navigation, and concurrent 
sensor processing is shown in Figure 4.  Each of the modules is further detailed in 
the following sections. 
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SAE AS-4 JAUS (Joint Architecture for Unmanned Systems) was implemented 
for communications, enabling automated dynamic configuration and enhancing the 
future reusability and commercialization potential of DUC software. Each software 
module is implemented as a JAUS component with all interactions to and from 
other modules occurring via JAUS messages.  As such, each software module 
operates as a standalone component that can be run on any one of the computing 
nodes. Since dynamic configuration and data subscription is handled via JAUS, the 
system is highly reconfigurable, modular, expandable, and reusable beyond the 
Urban Challenge. An additional benefit of employing a communications standard 
toolkit was the easy integration of logging and simulation (both discussed further in 
section 6). 

 

Fig. 4. System Architecture for Odin, omitting Health Monitor connections for clarity 

2.2   Perception 

Perception is defined to include all aspects of the design necessary to sense the 
environment and the vehicle’s position in it.  Each perception module transforms 
raw data collected from multiple sensors into information useful to the decision 
making software.  
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2.2.1   Sensor Layout 
The sensor coverage for Odin is shown in Figure 5. The largest portion of Odin’s 
detection coverage is provided by a coordinated pair of IBEO Alasca XT Fusion 
laser rangefinders. This system comprises two 4-plane, multi-return rangefinders 
and a single external control unit (ECU) that covers a 260 degree field of view as 
shown in Figure 5. The system has an advertised range of almost 200 meters, 
although the effective range to reliably identify most objects has been shown in 
testing to be closer to 70 meters. A single IBEO Alasca A0 unit with a field of 
view of 150-degrees is used to detect approaching vehicles behind Odin and 
navigate in reverse. The Alasca A0 is an earlier generation Alasca sensor than the 
XT, and testing has shown a lower range of approximately 50 meters for reliable 
object classification. 

 

Fig. 5. Odin’s sensor coverage. The colored areas indicate the maximum range of the 
sensor or the point at which the sensors scanning plane intersects the ground. Odin is facing 
to the right in this figure. 

For short range road detection and obstacle detection, two additional SICK 
LMS 291 laser rangefinders are angled downward on the front corners of the roof 
rack. These sensors are able to detect negative obstacles and smaller obstacles that 
may be underneath the IBEO XT vertical field of view. Two side-mounted SICK 
LMS 291 single plane rangefinders are used to cover the side blind spots of the 
vehicle and ensure 360-degree coverage. The side mounted SICK LMS sensors 
are primarily utilized during passing maneuvers. 

Two IEEE 1394 color cameras were intended to supplement the IBEO obstacle 
classification software and perform road detection, but were not used in the final 
competition configuration. In combination, the cameras cover a 90-degree 
horizontal field of view in front of Odin, and each transmit raw 1024 by 768 
images at 15 frames per second.  
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2.2.2   Road Detection 
The Road Detection software component provides information about nearby roads 
and zones in the form of lanes (Report Lane Position) and overall drivable area 
(Drivable Area Coverage). Report Lane Position describes the available lanes of 
travel, and is used for decision making, vehicle navigation, and dynamic obstacle 
predictions. Drivable Area Coverage defines all areas available for Odin to drive, 
which is applied as a road filter for detected objects, and is used to assist with 
zone navigation. These two outputs are generated from three different sources: the 
RNDF, vision data, and SICK LIDAR data. The RNDF is used to define all lanes 
and drivable areas within a certain range of the vehicle. The sensor data is then 
used to better define roads when the waypoints are sparse or GPS coverage is 
poor. Both SICK LIDAR and vision processing can be manually enabled or 
disabled if not needed due to the configuration of the current course. 

RNDF Processing 
The basis for the Road Detection module is the Route Network Definition File 
(RNDF) supplied by DARPA. The specified lanes and exit-entrance pairs in the 
file are preprocessed to automatically to create continuous paths for Odin. Cubic 
spline interpolations produce a piecewise continuous curve that passes through all 
waypoints in each lane. This interpolation uses a cubic function, the waypoint 
positions, and a desired heading to ensure a smooth transition between adjoining 
pieces of the lane (Eren, 1999). The cubic function used to define the spline 
interpolation is: 
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where x(u) and y(u) are the point position at u  which is incremented from zero to 
one to generate the spline interpolation between two points. The eight unknowns 
of these two equations (ax, bx, cx, dx, ay, by, cy, dy) can be determined using the 
eight boundary conditions set by the waypoint positions and desired headings: 
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where pk-1, pk, pk+1, and pk+2 represent the waypoint positions (x and y), and c is the 
desired curvature control. In matrix form, this set of equations for a spline 
interpolation between two points is as follows: 
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After solving for the unknowns, u is incremented at the desired resolution, or 
number of points, to create the interpolation between the two waypoints. The 
curvature control variable can be adjusted to increase or decrease the curvature 
between the points. This splining is also used to generate the desired path (termed 
a “lane branch”) through intersections for every exit-entrance pair. Branches 
extend a lane from an exit point to the entrance point of a connecting lane, 
allowing lane maintenance to guide a vehicle through an intersection. Figure 6 
shows an example spline interpolation for a 90o right turn (e.g. a typical right turn 
at a four-way intersection). The plot on the left shows an ideal spline for this 
intersection while the plot on the right shows the effect of a lower curvature 
control value. Four waypoints, shown as round points, are required for a cubic 
spline interpolation. The linear connection between these points is shown as the 
dashed line for visual reference. The cubic spline interpolation with a resolution of 
five points is the solid line with square points. 

 

 

Fig. 6. Example cubic spline interpolation for a 90o right turn with an ideal spline (left). 
The effect of a lower curvature control value is also plotted (right). Waypoints are the 
round points. Spline interpolation is the solid line with square points. For visual reference, 
linear connections are shown by the dashed line. 
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All splining for the RNDF is preprocessed when an RNDF is loaded. As Odin 
drives the RNDF, nearby lanes and intersections are extracted and assembled into 
the Report Lane Position output. This output creates the possible paths for Odin 
and other sensed vehicles. The Report Lane Position software was developed to 
automatically generate these cubic spline interpolations for an entire RNDF. This 
is achieved in two steps using the geometry between waypoints. First, it is 
determined whether or not spline interpolation is necessary. In other words, a 
series of straight waypoints or a straight through intersection does not require 
cubic splining, but traveling around a traffic circle would. Next, the curvature 
control is selected for the locations that required splining using the distance 
between waypoints, the previous and future desired headings, and knowledge 
gained from cubic spline data analysis. The automatic spline generator was 
originally designed to guide Odin through intersections as a human driver would, 
and therefore performed close to flawlessly in these more open navigation 
situations. Lane splines, on the other hand, required much more precision to 
follow the course of the road. The splining process always provided smooth paths 
for the vehicle, but lacked the realization of the actual geometry of the roads and 
intersections.  

A solution to this problem was to compare the cubic spline output to geo-
referenced aerial imagery, which was guaranteed to be supplied by DARPA for 
the competition. Using this information, the spline curvatures could be manually 
adjusted to help ensure the splined lane positions match the physical lanes in the 
road network. Therefore, the RNDF processing software was modified to accept 
manual overrides to the generated splines, and save a configuration file if changes 
were required. Figure 7 shows an example of comparing the splined Report Lane 
Position output (bright overlays) to the actual road (outlined by the beige curbs) in 
the geo-referenced aerial imagery of Victorville. 

 

Fig. 7. Example of the splined lane positions (bright overlays) output matching the actual 
roads in the aerial imagery. The road displayed is segment 11 of the UCE RNDF. 

RNDF based Drivable Area Coverage uses a combination of the splined Report 
Lane Position output and the zones from the RNDF. This is also preprocessed to 
create the Drivable Area Coverage for the entire course. During operation, the 
drivable area within range of Odin is extracted and output as a drivable area map. 
This drivable area map is a binary image that marks all nearby areas in which 
Odin or another vehicle can be expected to operate. 
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Sensor Data 
Odin also uses LIDAR data to supplement the RNDF generated lane and road 
positions. The two forward-looking SICK LIDAR identify the road by looking for 
rapid changes in range that result from discontinuities in a flat road surface, such 
as those caused by curbs, potholes, and obstacles. The SICK LIDAR are 
positioned at different vertical angles to allow the algorithm to analyze multiple 
returns on the same features.  

Lane positions can be predicted by fitting probable road boundary locations 
through a second-order least squares regression analysis. Given the locations 
classified as potential curb sites by the LIDAR, the curb points are defined as the 
points that follow the previous estimate inside an allowable scatter. This scatter is 
determined by the standard deviation of the previous estimate and is weighted to 
allow more points closer to Odin and to select the closest curb boundary detected. 
Figure 8a shows logged data indicating all potential curb points, the subset used in 
the regression, and resulting boundary curves. Lane position can then be 
determined by referencing the expected number of lanes in the RNDF. The 
RNDF-based Report Lane Position output can be augmented with these sensed 
lanes. Figure 8b shows an aggregation of the curb points previously used in the 
regression traveling down a two lane road. The curb points follow the shape of the 
of the road, but as shown in Figure 8a, detection only reaches 10-15 meters in 
front of the vehicle, requiring software to slow the speed of the vehicle to maintain 
safe operation. 

In addition to LIDAR, computer vision approaches were also attempted for 
detecting lanes as well as improving the drivable area coverage map. The visual 
lane detection software uses image intensity to distinguish bright lane boundaries 
 

(a)    (b)  

Fig. 8. LIDAR based road detection results: (a) A single frame of potential curb points in 
world frame with points used in the regression darkened. The regression output curve is the 
dashed line. Grid spacing is 5 meters, and Odin is represented by the rectangle. (b) An 
aggregation of all curb points previously used in the lane boundary regression along a 
single road, plotted in UTM coordinates. 
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from the darker surrounding areas of the road surface. Edge detection is applied to 
the results of the intensity operation, separating out the lines and edges of the road. 
The position of each lane is found by fitting the strongest lines on the road to a 
curve through a Hough transform (Duda, 1972). Vision was also used to improve 
the drivable area coverage map in zones by finding low-profile islands usually 
found in parking lots. These islands are often a different color than the 
surrounding area, and therefore vision processing is ideal for detecting them. The 
algorithm thresholds the entire image according to the absolute color of an area 
directly in front of Odin, which is assumed to be drivable. Significant color 
changes in this control area are ignored for a short period of time to improve this 
assumption.  The detected features are then subtracted from the Drivable Area 
Coverage map generated from the RNDF. Both of these vision algorithms were 
not used in the final competition due to a lack of sufficient testing and 
development as further discussed in section 3. 

2.2.3   Object Classification 
The accurate identification and classification of objects is one of the most 
fundamental and difficult requirements of the Urban Challenge. The vision system 
and the laser rangefinders each have advantages and disadvantages for 
classification. The IBEO rangefinders can determine the location of an object to 
sub-meter accuracy, but they have poor classification capabilities. Vision-based 
methods can result in accurate classification, but they are computationally 
intensive and have a limited horizontal field of view and range. 

The classification module splits all objects into one of two categories: static 
objects that will not be in motion, and dynamic objects that are in motion or could 
be in motion. Dynamic objects on the course are expected to be either manned or 
unmanned vehicles. The core of the classification module, shown in Figure 9, is 
the IBEO laser rangefinders. While visual methods of detection were examined, 
they were determined to be too computationally intensive to return accurate 
information about nearby objects, especially at higher vehicle speeds.  This 
problem is intensified due to the fact that multiple cameras are needed to cover a 
full 360-degree sweep around Odin.  The A0 and XT Fusion rangefinders cover 
almost the entire area around Odin, and objects can be detected and segmented 
using software available on the IBEO ECUs (Fuerstenberg, Dietmayer, Lages, 
2003), (Fuerstenberg, Linzmeier, Dietmayer, 2003). These ECU objects serve as 
the basis for the module.  However small deviations in the laser pulse’s reflection 
point and time of flight often causes variations in the results of the built-in 
segmentation routines.  To account for these variations a filter is applied that 
requires each object to have been detected and tracked for a short but continuous 
period of time before the object is considered valid. The positions of these valid 
objects are then checked against the Drivable Area Coverage map; anything not on 
or close to drivable area is considered inconsequential and is not examined. 

Once these detected objects are sufficiently filtered through their position  
and time of detection, their characteristics are passed to a classification center  
for verification. Through testing, the IBEOs have proven to be accurate in  
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Fig. 9. The Object Classification module localizes and classifies all perceived objects 

determining a moving object’s velocity, and it is assumed that all large moving 
objects are vehicles. It is also important for the system to detect stationary vehicles 
in front of Odin for situations such as intersection queuing and precedence. The 
initial software design included verification of object classification using 
monocular image processing. The real-world locations of objects obtained from 
the IBEOs are transformed into regions of interest within the image, which are 
searched for features common to cars such as tail lights and tires (Cacciola, 2007). 
By restricting processing to these regions, high resolution imagery could be used 
without the usual processing penalty. This feature was effective at correcting 
groups of static obstacles being incorrectly classified as a dynamic obstacle.  
However there was an inadequate amount of test time logged to verify that certain 
critical failure modes, such as the vision system incorrectly identifying a dynamic 
object as static or the correct handling of complete vision outages due to poor 
lighting conditions, would not occur.  Therefore, the vision portion of the 
classification module was not used in the final competition.   

2.2.4   SICK LIDAR Based Detection 
The four SICK LMS-291 units on Odin were used for close-range object 
detection. The two side-mounted SICK LIDAR are devoted to blind spot 
checking. Figure 10 shows a history of LIDAR objects after being transformed 
into vehicle frame. If the areas adjacent to the vehicle sides have a return that is 
above a height threshold, then the blind spot is reported as not clear. 

The two front-mounted SICK LIDAR are used to detect objects that are within 
close range of the vehicle but outside the IBEO’s vertical field of view. The 
returns of these downward pointed laser rangefinders are segmented based on 
range discontinuities and classified as road or an obstacle based on a height 
threshold. This information is compared over multiple scans to capture the overall  
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Fig. 10. SICK LMS scan data transformed into vehicle frame. A (the outline of a car) has 
been classified as an obstacle, B has been classified as drivable road, the circles are 
potential curb sites. Grid spacing is 5 meters, and Odin is represented by the rectangle. 

behavior of an object through time, and is used to reclassify the object if 
necessary. Figure 10 shows an example of classifications derived from a SICK 
scan cycle. This illustration also shows the potential curbs marked as circles. 
These points are determined after the drivable area is distinguished, and defined as 
points where the drivable area ends or had a sharp step in the profile. 

2.2.5   Dynamic Obstacle Predictor 
Once an object has been classified as a vehicle, it is monitored by the Dynamic 
Obstacle Predictor, which predicts likely paths for each vehicle based on road data 
and the motion history of the object. If there is no available lane data, such as in 
zones or if a dynamic obstacle doesn’t appear to be following a lane, the Dynamic 
Obstacle Predictor simply continues the current motion into the future. These 
predictions are used by Driving Behaviors for traffic interaction at intersections 
(such as merges) and Motion Planning for obstacle avoidance. 

2.2.6   Localization 
Odin has been equipped with a Novatel Propak LB+ system that provides a 
filtered GPS/INS solution. In addition, wheel speed and steering angle 
measurements are available from the vehicle interface. An Extended Kalman 
Filter (EKF) has been developed using standard methodology (Kelly, 1994) that 
combines these measurements with the goal of improving the Novatel solution 
during GPS outages. In addition, this filter provides a means for incorporating 
other absolute position measurements. The best case accuracy of the position 
provided by this localization solution is 10 cm CEP. 

A separate local position solution is also tracked in Odin’s localization 
software. This solution provides a smooth and continuous position estimate that  
places Odin in an arbitrary local frame. The goal of this position solution is to 
provide perception modules with a position frame to place obstacles that is free of  
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discontinuities caused by GPS position jumps. This is accomplished by calculating 
the local position using only odometry. This position typically drifts by 2.6% of 
the total distance traveled by the vehicle; however, this error accumulation is 
small enough that it does not cause significant position error within the range of 
the vehicle’s perception sensors. 

2.3   Planning 

Decision making for Odin is handled by a suite of modules cooperating in a hybrid 
deliberative-reactive-deliberative fashion. Each of the major components is 
presented in sequence, from the top down. 

2.3.1   Route Planning 
The Route Planner component is the coarsest level of decision planning on Odin 
as it only determines which road segments should be traveled to complete a 
mission. It uses a-priori information such as the road network and speed limits 
specified by the RNDF and MDF respectively, as well as blockage information 
gathered during mission runs. After processing, the Route Planner outputs a series 
of waypoint exits to achieve each checkpoint in the mission. 

By only considering exit waypoints, it is easy to formulate the Route Planner as 
a graph search problem. The Route Planner on Odin implements the A* graph 
search method (Hart, 1968) using a time-based heuristic to plan the roads traveled. 
While the A* search algorithm guarantees an optimal solution, it depends on the 
validity of the data used in the search. The time estimate used during the search 
assumes that the vehicle is able to travel at the specified segment speed limits, and 
it uses predefined estimates of the time for typical events, such as the time taken 
when traversing a stop line intersection, performing a U-turn, or entering a zone.  

2.3.2   Driving Behaviors 
Driving Behaviors is responsible for producing three outputs. First, Driving 
Behaviors must produce a behavior profile command which defines short term 
goals for Motion Planning in both roads and zones. Second, in the event of a road-
block, a new set of directions must be requested from the Route Planner. Finally 
the turn signals and horn must be controlled to appropriately signal the intent of 
the vehicle. 

The behavior profile sent to Motion Planning comprises six target points, a 
desired maximum speed, travel lane, and direction (Forward, Reverse, and Don’t 
Care). Each target point contains a waypoint location in UTM coordinates, the 
lane, and lane branch (for intersections). Target points can also contain optional 
fields such as a stop flag and a desired heading. Lastly, the behavior profile also 
contains zone and safety area flags to enable different behaviors in Motion 
Planning. 

Action-Selection Mechanism 
Driving Behaviors must coordinate the completion of sophisticated tasks in a 
dynamic, partially observable and unpredictable environment.  The higher level 
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decision making being performed in Driving Behaviors must be able to handle 
multiple goals of continually changing importance, noisy and incomplete 
perception data, and non-instantaneous control. To do this, a Behavior-Based 
Paradigm was implemented. The unpredictable nature of an urban environment 
calls for a robust, vertical decomposition of behaviors. Other advantages of using a 
Behavior-Based Paradigm include modularity, the ability to test incrementally, and 
graceful degradation (Murphy, 2000). For instance, if a behavior responsible for 
handling complex traffic situations malfunctions, simpler behaviors should still be 
operable, allowing Odin to continue on missions with slightly less functionality. 

As with any Behavior-Based architecture, implementation details are extremely 
important and can lead to drastically different emergent behaviors. Coordination 
becomes paramount since no centralized planning modules are used and control is 
shared amongst a variety of perception-action units, or behaviors. In the Urban 
Challenge environment, the problem of action selection in the case for conflicting 
desires is of particular interest. For example the desire to drive in the right lane 
due to an upcoming right turn must supersede the desire to drive in the left lane 
due to a slow moving vehicle.  Furthermore, due to the strict rules of urban 
driving, certain maneuvers must be explicitly guaranteed by the programmer.  To 
address this problem, a method of behavior-selection is needed such that Driving 
Behaviors will actively determine and run the most appropriate behaviors given 
the current situation. 

An arbitration method of action selection (Pirjanian, 1999) is used for the 
Driving Behaviors module. In the above example of choosing the appropriate lane 
to drive in, driving with two wheels in each lane is not an acceptable solution. 
Therefore, a modified Winner-Takes-All (Maes, 1989) mechanism was chosen.  
To address the situational awareness problem, a system of hierarchical finite state 
machines is used.  Such a system allows Driving Behaviors to distinguish between 
intersection, parking lot, and normal road scenarios (Hurdus, 2008).  The 
implementation of finite state machines also provides resilience to perception 
noise and by using a hierarchical system, concurrency is easily produced. The 
overall architecture of Driving Behaviors is shown in Figure 11. A finite state 
machine is used to classify the situation, and each individual behavior can be 
viewed as a lower-level, nested state machine. The chosen Action Selection 
Mechanism operates within the Behavior Integrator.  This approach is considered 
a modified Winner-Takes-All approach because all behavior outputs are broken 
down into one of several categories, including, but not limited to, Target Point 
Drivers, Speed Drivers, and Lane Drivers.  

Passing and Blocked Roads 
When driving down a normal section of road, (i.e. not in a safety zone 
approaching an intersection, not in an intersection polygon, and not in a zone)  
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Fig. 11. Flow diagram of the Behavior-Based, Winner-Takes-All Driving Behaviors 
implementation. Behavior Integrator ensures there is one winner from each driver category. 

Odin runs three behaviors, the Route Driver, the Passing Driver, and the Blockage 
Driver. The Route Driver is responsible for driving the route as close as possible 
to the route originally provided by the Route Planner.  If no obstacles or traffic are 
ever encountered, then the Route Driver will maintain control of the vehicle 
throughout all segments of the RNDF.  When entering a new segment, for 
example, the Route Driver will immediately attempt to move Odin to the correct 
lane for the next exit. 

The Passing Driver is concerned with getting around slow moving or disabled 
vehicles. It is therefore responsible for monitoring other vehicles in the near 
vicinity, deciding if a pass is necessary, and executing this pass in a safe and legal 
manner. Awareness of the roads is necessary as the Passing Driver must 
distinguish between passing in an oncoming lane and passing in a forward lane, 
and subsequently check the appropriate areas for traffic.  The Passing Driver does 
not maintain knowledge of the overall route, so it is the responsibility of the Route 
Driver to overrule the Passing Driver if a pass is initiated too close to an exit or 
intersection. 

Finally, the Blockage Driver maintains a current list of available lanes.  If static 
obstacles in the road or a disabled vehicle cause a lane to be blocked, the Blockage 
Driver removes this lane from the available list.  If all RNDF defined lanes are 
removed from the list and at least one of these lanes is an oncoming lane, then the 
Blockage Driver commands a dynamic replan.  When this is necessary, the Route 
Planner is first updated with the appropriate blockage information and all 
behaviors are reset while a new route is generated. 

The interaction of these three drivers was sufficient for giving Odin the ability 
to pass disabled and slow-moving vehicles in the presence of oncoming and 
forward traffic, pass static obstacles blocking a lane, pass over all checkpoints, be 
in the correct lane for any exit, and initiate dynamic replans when necessary. 
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Intersections 
To handle intersections, Odin uses three drivers (Precedence, Merge, and Left 
Turn) in the Approaching Stop, Stop, Approaching Exit, and Exit situations. Of 
special note is that all three drivers operate by monitoring areas where vehicles (or 
their predictions) may be, rather than tracking vehicles by ID. While this decision 
was initially made to deal with object tracking issues in early iterations of the 
perception software, it turned out to greatly enhance the overall robustness of the 
intersection behavior. 

The Precedence Driver activates when Odin stops at junctions with more than 
one stop sign. This driver overrides the Route Driver by maintaining the current 
stop target point with a high urgency until it is Odin’s turn or a traffic jam has 
been detected and handled. The Merge Driver activates at intersections where 
Odin must enter or cross lanes of moving traffic, controlling the speed by 
monitoring areas of the merge lane or cross lanes for vehicles or vehicle 
predictions. To handle intersections with both moving traffic and other stop signs, 
the Merge Driver cannot adjust the speed until the Precedence Driver has 
indicated it is Odin’s turn or a traffic jam has been detected. 

For turns off a main road (a case where the RNDF does not explicitly state right 
of way via stop points), the Left Turn Driver activates when Odin’s desired lane 
branch at an upcoming exit waypoint crosses over oncoming traffic lanes. In this 
case, the Left Turn Driver overrides the Route Driver by setting the stop flag for 
the exit target point. Once the exit waypoint has been achieved, the driver controls 
the desired speed in the behavior profile while monitoring the cross-lanes for a 
sufficient gap to safely achieve the left turn. 

Parking Lot Navigation 
In zones, the role of Driving Behaviors is to provide general zone traversal 
guidance by controlling the behavior profile target points. Initially, VictorTango 
planned to fully automate the first stage of this process – determining the accepted 
travel patterns through a parking lot (along the parking rows). However, zones 
containing only a subset of the actual parking spots (i.e. one spot per row) make it 
difficult to automatically identify parking rows based on the RNDF alone. Since 
this could very well be the case in the final event, a tool was designed to manually 
place “control points” in the zone, in the form of a directionally-connected graph. 

In the route building stage of Driving Behaviors, Odin performs a guided 
Dijkstra search to select control points for navigating toward the parking spot and 
reversing out of the spot. The Route Driver then guides Odin along this pre-
planned path. If the path is blocked, the Zone Driver can disconnect a segment of 
the graph and choose a different set of control points. The parking maneuver is 
signaled to Motion Planning by enabling the stop flag and providing a desired 
heading on the parking checkpoint. To reverse out of the spot, the direction is 
constrained to be only in reverse, and a target point is placed in order to position 
Odin for the next parking spot or zone exit. 
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Driving Behaviors is not responsible for any object avoidance or traffic 
behavior in zones. Motion Planning handles tasks such as steering to the right for 
oncoming dynamic objects, performing the parking maneuver, and checking for 
safe space to reverse out of the spot. This was primarily due to the largely 
unknown environment in a zone, and the desire to keep Driving Behaviors 
independent of the exact size and mobility constraints of the vehicle. 

2.3.3   Motion Planning 
Motion Planning is responsible for planning the speed and path of the vehicle. 
Motion Planning receives behavior profiles, defined in section 2.3.2, from Driving 
Behaviors and plans a series of motion commands called a motion profile. The 
motion profile is a platform independent series of commands that include a desired 
curvature, curvature rate of change, desired velocity, maximum acceleration and 
time duration of each command. The motion profile consists of the entire path 
planned by motion planning and typically contains 2-3 seconds of commands. A 
platform independent motion profile message allows re-use of communication 
messages across base platforms, and allows vehicle specific control loops to take 
place in the Vehicle Interface. However, Motion Planning still requires a basic 
model of the specific operating platform. In addition to commanding the Vehicle 
Interface, Motion Planning can also provide feedback to Driving Behaviors about 
whether the currently commanded behavior profile is achievable. This feedback is 
critical when detecting a blocked lane or even an entirely blocked roadway. 

Motion Planning is structured into two main components consisting of a Speed 
Limiter and a Trajectory Search as shown in Figure 12. The Speed Limiter 
commands a maximum speed based on traffic in the future path of Odin and 
upcoming stop commands. Dynamic Obstacle predictions are analyzed to follow 
slower moving traffic or to stop behind a disabled vehicle leaving enough room to 
pass. The Speed Limiter sends Trajectory Search this maximum speed and an 
obstacle ID if the speed is limited by a dynamic obstacle. The speed limiter is 
disabled when traveling through zones, leaving Trajectory Search to handle all 
dynamic obstacles. 

The core of Motion Planning is the Trajectory Search module that simulates 
future motion to determine a safe and fast path through the sensed environment. 
Three main steps happen in Trajectory Search: (1) a cost map is created using lane 
and obstacle data, (2) a series of actions is chosen to reach a goal state, and (3) the 
series of actions is processed into a feasible motion profile. The Trajectory Search 
plans with the assumption of an 80ms processing time. If run time exceeds 450ms 
or all possible actions are exhausted, the goal criteria are declared unachievable. 
Driving Behaviors is notified about the unachievable goal and a stop is 
commanded, with urgency depending on the proximity of obstacles.  

Trajectory Search uses a fixed grid size cost map to represent the environment 
when solving for a motion path. The range and resolution of the cost map is 
configurable, and the final configuration used a resolution of 20cm2 per cell, 
extending 30m in front of the vehicle, and 15m behind and to the sides of the 
vehicle. It is important to note that Driving Behaviors and the Speed Limiter  
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Fig. 12. Software flow diagram of the Motion Planning component 

software did not use this cost map, allowing these modules to incorporate dynamic 
obstacles beyond this range. The cost map stores costs as 8-bit values allowing 
obstacles to be stored as highest cost at the obstacle and reduced cost around the 
obstacle. Figure 13a shows an example cost map with costs added from obstacles 
and lane boundaries. Dynamic obstacles are expanded to account for future 
motion. However, this treatment of dynamic obstacles is very limiting, and 
responding to dynamic obstacles is mainly the job of the Speed Limiter. If the 
Speed Limiter is reacting to a dynamic obstacle, the ID is passed to Trajectory 
Search and the obstacle is omitted from the cost map. Omitting these dynamic 
obstacles prevents Trajectory Search from deciding a slower moving vehicle is 
blocking a lane. 

(a)   (b)  

Fig. 13. (a) Trajectory Search cost map with labeled features. (b) Trajectory Search cost 
map with planned solution representing each action in a different color. 
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Once a cost map is created, Trajectory Search then produces a set of goal 
criteria using data from the behavior profile such as: desired lane, zone, desired 
gear and heading criteria. Goal criteria may be as simple as driving a set distance 
down a lane or more specific such as achieving a desired position with a desired 
heading. The search process starts with the current vehicle state and uses an A* 
search to evaluate sequences of possible future actions. Each action consists of a 
forward velocity and steering rate over a period of time. These actions are 
evaluated by checking the predicted path of the vehicle due to the action against 
the cost map as well as other costs such as distance from the lane center and time. 
The search speed is improved by only using a finite set of possible actions that 
have pre-computed motion simulation results (Lacaze, 1998). Figure 13b shows a 
planned path with each action having a different color. 

Odin uses a pre-computed results set with an initial steering angle varied at 
0.25 degree increments, commanded steering rates varied from 0 to 18 degrees/sec 
at 6 degree/second increments and commanded velocities ranging from 2 to 12.5 
m/s at 3.5 m/s increments. The pre-computed results contained information 
including which grid cells will be occupied as well as final state information. A 
separate set of coarser results is used in situations where the vehicle is allowed to 
travel in reverse. When creating a sequence of actions, the pre-computed 
occupancy data is translated and rotated based on the previous ending state 
conditions. When the search algorithm runs, actions that are dynamically unsafe or 
have a commanded velocity too far from the previous velocity are filtered out. 
After the search is complete, the list of actions is converted to a drivable series of 
motion commands. This last step selects accelerations, and accounts for 
decelerating in advance for future slower speeds. Steering rates are also scaled to 
match the planned path if the vehicle is travelling at a different speed than 
originally planned. The Trajectory Search solves the goal using the fastest possible 
paths (usually resulting in smoother paths), and these speeds are often reduced due 
to MDF speed limits or due to the Speed Limiter. 

While traveling in segments, Trajectory Search chooses goals that travel down 
a lane. In contrast, zone traversal is guided by target points along with goal criteria 
and search heuristics to produce different behaviors. The behaviors include 
forming artificial lanes to connect the points, a recovery behavior allowing the 
vehicle to reverse and seek the center of the fake lane, and a wandering behavior 
that uses no lane structure at all. These behaviors are activated by a simple state 
machine that chooses the next behavior if the current behavior was resulting in 
unachievable goals. Development time was reduced and reliability was improved 
by using the same Trajectory Search algorithm in zones as well as segments. 
While the overall behavior of the vehicle could be adjusted by changing the goals 
and heuristics, the core functionality of planning fast collision-free motion 
remained constant. 

2.3.4   Vehicle Interface 
The main role of the Vehicle Interface component is to interpret the generic 
motion profile messages from Motion Planning, defined in section 2.3.3, and 
output vehicle-specific throttle, brake, steering, and shifting signals. By accepting 
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platform independent motion commands and handling speed control and steering 
control at a low level, any updates to the vehicle-specific hardware or software can 
be made transparent to the higher level decision making components. 
Additionally, the Vehicle Interface can actuate other vehicle systems such as 
lights, turn signals, and the horn. 

Closed loop speed control is provided by a map-linearized PID controller. The 
controller, as shown in Figure 14, takes the output of the PID, band limits it to 
control the maximum acceleration, and inputs it to a map lookup function to 
produce a throttle or brake command. Terrain compensation is provided by a 
proportional controller that estimates the longitudinal acceleration on the vehicle 
and additively enhances the map input (Currier, 2008).  

 

Fig. 14. Block diagram of speed controller showing PID controller, acceleration controller 
and map lookup linearization function.  

Steering control relies on a standard bicycle model to estimate the curvature 
response of the vehicle (Milliken, 1995). This model can be shown to produce 
estimates accurate enough for autonomous driving in the operational conditions 
found in the Urban Challenge (Currier, 2008). The steering angle and rate 
calculated by the bicycle model is tracked by a rate controlled PID loop to produce 
the desired vehicle path.  

3   Final Software Configuration 

As the Urban Challenge approached, decisions had to be made for the final 
software configuration to be used in the event to ensure adequate testing time. 
These choices ranged from setting maximum/minimum parameters to disabling 
software components. This section explains test procedures and rationale for the 
final adjustments made to Odin’s software configuration.  

3.1   Motion Planning Parameters 

For all NQE runs as well as the final UCE, the maximum speed that Odin would 
drive was limited to 10 m/s (22 mph). This allowed Odin to drive at the maximum 
speed specified for all segments during NQE, and the maximum speed for all but 
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two segments on the UCE. The limiting factor in determining a safe maximum 
speed was the distance that obstacles could be reliably detected. During testing, 
the vehicle could smoothly drive roads at speeds of 13 m/s (29 mph), but would 
occasionally stop very close to obstacles such as a disabled vehicle or roadblock. 
This was due to hills or varying terrain causing obstacles to be out of the vertical 
sensor field of view until Odin was closer to the obstacle. 

3.2   Sparse Road Detection 

Prior to competition, members of the team tested the road detection suite in a wide 
variety of sparse waypoint scenarios. Odin was tested on various road 
compositions including dirt, gravel, and asphalt roads. Lane definitions were also 
varied. These tests were on well lined and poorly lined roads, as well roads with 
curbs, drop offs, and ditches. Laser rangefinder based methods of lane detection 
yielded reasonably robust results, but due to the possible variety of road surfaces 
and markings, vision based methods were much less robust. The primary 
challenge for lane detection was defining assumptions. The algorithm did not have 
enough engineering time to handle all possible roads. Further, the sparse waypoint 
example in the sample RNDF indicated that Odin would be required to negotiate 
intersections in sparse scenarios, which through analysis became very demanding 
on the algorithms. 

As a result, the team felt comfortable that if sparse waypoints would be 
required, this software could be turned on; but it was deemed that splining 
waypoints would be the method of choice if the final event RNDF permitted. 
Hence, before arriving in California, all code associated with vision based lane 
detection was disabled, and an implementation of the software that allowed the 
team to selectively disable/enable the laser rangefinder based lane detection was 
put in place. This allowed the team to turn on laser rangefinder based lane 
detection where certain conditions are met. Upon receipt of each RNDF, the team 
would examine all points in the simulator visualization to determine if the 
segments required the sparse waypoint algorithm to be enabled for that RNDF. 
Due to the relative density of the waypoints in all events there was never a 
requirement for this algorithm to be enabled.  

3.3   Vision Drivable Area Coverage 

As previously defined in section 2.2.2, the RNDF defines the drivable areas while 
sensor data is used to verify the RNDF information and subtract out areas that 
contained obstacles, such as landscaped islands in parking lots. After extensive 
testing in various environments and lighting conditions, the vision Drivable Area 
Coverage was not reliable enough to be trusted. It would occasionally produce 
false positives that eliminated drivable areas directly in front of the vehicle when 
no obstacles were present. Also, there were no un-drivable areas in zones present 
during the NQE or UCE courses. The team decided that the laser rangefinders and 
Object Classification were able to detect most static obstacles that would get in the 
way of Odin. Therefore, vision Drivable Area Coverage was disabled to prevent 
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the vehicle from stopping and getting stuck in the event of a false positive 
produced by the vision processing. 

4   National Qualifying Event 

The team spent many long days and nights testing and preparing for the Urban 
Challenge NQE and UCE. This section presents and analyzes Odin’s performance 
in the National Qualifying Event. 

4.1   NQE A – Traffic 

This NQE course challenged a vehicle’s ability to drive in heavy traffic while 
balancing safety and aggressiveness. The first vehicle to perform at NQE course 
A, Odin performed well, executing merges and left turns with only a few minor 
errors. Odin also had no trouble with the k-rails surrounding the course that caused 
many other teams problems when merging into traffic. The mistakes Odin made 
were subsequently fixed and could be attributed to the following: needing to adjust 
intersection commitment threshold, an IBEO region of interest bug, and false 
object classifications. 

To prevent Odin from slamming on the brakes and blocking an intersection, 
Odin will commit to traversing an intersection once it has passed a calculated 
threshold. This threshold is based on being able to stop without protruding into 
traffic lanes. However, several times in Odin’s first run on NQE Area A, Odin 
commanded a merge in the situation show in Figure 15. About 350 milliseconds 
later, the previously occluded vehicle (4) suddenly appeared to sensors at a range 
that would normally prevent Odin from commanding a merge. However, since the 
stop line was very close to the cross-lane, Odin had already passed the commit 
point and disabled the cancellation mechanism. For the second NQE run, the team 
adjusted the commit point, allowing merges to be cancelled closer to the road. On 
the second course A run, Odin performed satisfactorily with the occluded cars by 
properly canceling the merge when the occluded vehicle was in view. 

 

Fig. 15. A merge in NQE course A with an occluded vehicle (vehicle 4) 
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A bug in the IBEO factory software also resulted in Odin cutting off traffic 
vehicles. The IBEO sensors allow a region of interest to be defined to reduce the 
number of output objects, which is important given that the IBEO software has an 
internal limit of 64 objects.  This region is in the shape of a trapezoid defined by 
its upper-left and lower-right corners. Objects filtered out by the region of interest 
can still count towards the limit of 64, which could cause objects far away from 
the vehicle to prevent closer objects from being returned. This behavior can be 
prevented by enabling an option to only process scan returns into objects within 
the region. However, if this option is enabled, the region is incorrectly defined as 
the thin rectangle within the trapezoid, causing all of the pre-calculated regions to 
be smaller than intended. Enabling this option was a configuration change enabled 
shortly before the challenge, and the issue wasn’t discovered until after the second 
NQE course run. Afterwards, the pre-calculated regions were redefined to ensure 
that vehicles were always seen in time for the behavior software to correctly 
interact with them. 

The most serious incident on NQE course A occurred during the first attempt 
when Odin completed a couple of laps, then came to a stop when making the left 
turn off the main loop. Odin unfortunately remained stopped and did not proceed 
through large gaps in the traffic. The judges let the team reposition Odin, and Odin 
was able to continue completing laps without getting stuck again. After examining 
logs, it was found that the retro-reflective lane markings were appearing as 
obstacles to the IBEO LIDAR. These sections were about the same length as a 
typical car and were classified as a stopped dynamic obstacle. The false objects 
would intermittently appear, only causing Odin to be stuck once. The software 
already had safeguards against waiting for stationary vehicles, but these were 
ineffective due to the object flickering in and out, resetting timers used to track 
stationary vheicles. To ensure this would not occur in the final race, the planning 
software was made more robust against flickering objects. These changes 
prevented Odin from being stuck on multiple occasions on the second NQE course 
A run, but did cause unnecessary delay when making a left turn. This problem was 
mainly a result of only depending on a single sensor modality, LIDAR, for 
obstacle detection and classification.  Additional sensing methods, such as vision 
or radar, could help reduce the number of these false positives by providing 
unique information about surrounding objects detected through LIDAR. 

4.2   NQE B – Navigation and Parking 

NQE course B was used to test road and zone navigation, parking, and obstacle 
avoidance. The vehicles were given missions that took them around the large 
course, through parking areas, and down streets with parked cars and other 
blockages. Odin accepted the challenge at top speed and set himself up to 
complete with a competitive time. However, during the first run, Odin had minor 
parking confusion and got stuck in the gauntlet area resulting in insufficient time 
to complete the mission. Odin experienced a significant GPS pop on the second 
run of NQE course B that causing the vehicle to jump a curb. After restarting back 
on the road, Odin finished the course without any problems. 
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During the first run of NQE B, Odin approached the desired space in the row of 
parking spots, shown in Figure 16, and stopped for a moment. Instead of pulling 
into the spot, Odin reversed, drove forward in a loop around the entire row of cars, 
and then pulled right into the spot at a crooked angle. This surprising maneuver 
was caused by an incorrect assumption regarding the amount of space that would 
be available in front of the vehicle after a parking maneuver. Motion Planning 
could not find a clear path due to the car parked in front of the spot. After Odin 
tried to reposition itself without any progress, another behavior took control that 
tries to navigate around obstructions, causing Odin to circle the lot. When Odin 
returned to the parking spot, the software was able to find a parking solution with 
a clear path by parking at an angle. The parking software was improved between 
runs to more accurately check for a clear path that did not extend past the parking 
space. It is interesting to note that with a lower level software failure, Odin was 
still able to park, but with reduced performance. 

 

Fig. 16. During NQE B, Odin did not pull into the parking spot by the direct path (solid 
line). Instead, Odin pulled to the left (dashed line), circling the parked cars and eventually 
entered the space. 

During the first run of NQE course B, Odin became stuck in the area known as 
the ‘Gauntlet’, characterized by vehicles parked along both sides of the road. This 
length of road was further complicated with cones and traffic barrels marking 
construction hazards along the centerline of the road. A simulator screenshot of 
what was seen in the Gauntlet is shown in Figure 17a. Odin tried to change lanes 
to pass the disabled vehicle, but was unable to execute this command because the 
blind spot was reported as not clear. Reviewing the logged data also revealed that 
Odin had difficulty traveling where both lanes of travel were significantly 
blocked. As seen in Figure 17a, both lanes are mostly blocked, but there is a large 
space in between the lanes. To solve the first problem, the lane change driver was 
changed to be less cautious about obstacles in a blind spot when lanes had 
opposite traffic directions. To allow Odin to use the entire road more effectively, 
motion planning would still have a strong desire to stay in the commanded lane 
during a lane change, but was changed to not be constrained to remain entirely in 
the commanded lane. 
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(a)                                                             (b) 

Fig. 17. Gauntlet scenario from NQE area B seen in (a) simulation replay and (b) logged 
video 

Odin experienced localization failures on the second attempt at NQE course B. 
As Odin exited the traffic circle onto Sabre St, the position solution provided by 
the Novatel system suddenly jumped almost 10 meters to the southeast. Since the 
road estimate was derived completely from GPS, this new vehicle position caused 
Odin to think it had left the lane. Motion Planning attempted to move Odin back 
into the desired lane of travel, but could not due to a virtual boundary placed 
around the lane. As a result, Odin drove to the end of Sabre Rd, thinking that it 
was driving off of the road. At the end of Sabre Rd, Odin reached a virtual 
boundary caused by the intersection of two segments. Having nowhere else to go, 
Odin turned right and drove onto the dirt on the side of the road and was paused. 
Within milliseconds of the pause, the localization solution reported by the Novatel 
system corrected itself. Such a large jump in position was never encountered in 
testing, and was not repeated in any NQE course or the final event. 

4.3   NQE C – Intersections and Road Blocks 

The final NQE course was used to test intersection precedence and dynamic 
replanning due to road blocks. Odin performed perfectly at all intersections 
yielding to those who had right-of-way and taking the appropriate turn, shown in 
Figure 18a. Replanning due to a road blockage was also a success. An interesting 
challenge presented in NQE C was a road blockage that was repeatedly 
approached by the vehicles during a mission. When Odin detected a blockage 
requiring a route replan, the Route Planner would add the blockage and a pair of 
u-turn connections to the waypoint on both sides of the blockage to its internal 
road map. Allowing a U-turn on the opposite side of a blockage provided an 
adequate solution for NQE C; however, it can introduce a problem in a dynamic 
environment where a blockage may not be permanent, allowing a vehicle to plan a 
U-turn in the middle of a clear road. 

Odin did have trouble detecting the stop sign blockage shown in Figure 18b. 
The perception module had never been presented with an obstacle that was not 
attached to the ground within the road area. The laser rangefinder sensor suite on  
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(a) (b)  

Fig. 18. NQE course C contained (a) stop sign intersections and (b) road blockages 

Odin had a narrow vertical field of view which caused difficulty perceiving this 
blockage. The IBEO sensors were barely able to detect the bottom of the stop 
signs attached to the gate while the vehicle was in motion. Once the signs were 
detected and the vehicle brakes were applied, the downward pitch of the vehicle 
caused the IBEOs to lose sight of the gate. The vehicle was then commanded to 
accelerate back up to speed, at which point the gate was seen again and the cycle 
repeated. The resulting behavior was that Odin crept forward towards the gate 
until the signs were detected by the close-range downward looking SICK 
rangefinders. At times the SICKs were barely detecting the stop signs, resulting in 
the processed stop sign object flickering in and out of existence. Because of this, it 
took the behavior module a significant amount of time to initiate a re-plan around 
the blockage. To resolve this issue the behavior software was modified to re-plan 
not only after constantly seeing a blockage for a constant period of time, but also 
after a blockage is seen in an area for a cumulative period of time. 

4.4   Practice and Preparation 

This section explains the VictorTango practice and preparation routine during the 
Urban Challenge events that helped make Odin successful. 

4.4.1   Practice Areas 
Team VictorTango always tried to maximize use of each practice timeslot. The 
team developed a number of RNDFs that replicated sections of the NQE RNDF 
for each of the practice areas. A detailed test plan was created for each practice. If 
problems arose, the goal was not to debug software, but to gather as much test 
data as possible for further analysis. This proved to be an extremely effective way 
to test given the short amount of time allowed for each practice block. 

During the practice sessions a fair amount of dust collected on the lenses of the 
IBEO laser rangefinders. Although the team was allowed to clean sensors between 
missions, Odin’s performance could have suffered until the vehicle returned due to 
this layer of dust. The IBEO sensors are capable of reading up to four returns per 
laser pulse in order to handle cases where small particles such as dust or 
precipitation cause the light reflection. After looking at the scan profiles for the 
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sensors while covered in dust, it was confirmed that a majority of the primary scan 
returns were contacting the dust resting on the lens. Even with the primary returns 
blocked, the sensors were still able to perceive all objects due to the multi-return 
feature. While running with dust on the lens is not ideal, Odin is able to continue 
without any reduction in perception capability until the lens can be cleaned. 

4.4.2   Simulation 
Simulation was a tool heavily used by team VictorTango during NQE and UCE 
preparation (the role of simulation in the entire software development process is 
discussed in section 6.2.2). In preparation for NQE and UCE, team VictorTango 
used an interactive simulator to load NQE & UCE RNDFs and dynamically add 
traffic vehicles or static obstacles. The team validated that Odin would be able to 
drive all areas of the RNDF before ever running Odin on the course and possibly 
wasting NQE run. For example, the planning software had trouble with the short 
road segments (less than 2 meters long) connecting the parking zones to the 
surrounding road segment. Software modifications to handle this previously 
untested RNDF style were validated in simulation. 

If a failure occurred during an NQE run, a simulation scene could be created to 
match the environment in which the failure occurred. As software developers 
fixed problems, the test team had the manpower to run simulations in 5 parallel 
groups on laptop computers. This gave the software developers the luxury of 
concentrating on remaining software bugs while the test team exhaustively 
checked new software in a full range of tests ensuring there were no unintended 
side effects. 

5   Urban Challenge Event 

The most obvious accomplishment of the VictorTango team is that Odin finished 
the Urban Challenge competitively.  This section highlights the successes and 
analyzes the incidents of Odin’s performance in the Urban Challenge race. 

5.1   Performance Overview 

First out of the gate, Odin left the start zone and drove away at top speed to 
complete his first mission. Not knowing what to expect, the team eagerly looked 
on with people stationed at each of the viewing locations of the UCE course. Odin 
performed superbly, finishing in third place with no accidents or major errors. 
Odin’s chase vehicle driver informed the team that Odin was a predictable and 
safe driver throughout the challenge. As the team watched the in car video, they 
saw that Odin navigated the roads and zones smoothly, made smart choices at 
intersections, and obeyed the rules of the road. The UCE did not demand as much 
obstacle avoidance and intersection navigation as the NQE. However, the 
endurance element and unpredictable nature of robot-on-robot interactions made it 
just as challenging. 
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5.2   Perception 

This section presents the perception issues Odin faced during the Urban 
Challenge.  Perception is defined to include all aspects of the design necessary to 
sense the environment and transform the raw data into information useful to the 
decision making software. 

5.2.1   Localization Pops 
During the UCE, Odin experienced a localization failure much like the one 
encountered during the NQE area B second attempt. Unlike the localization error 
during NQE, the position this time jumped to the north, causing Odin to 
compensate by driving onto the curb to the south. Fortunately, the position jump 
was not as severe. After a brief pause the localization solution returned to the 
correct position and Odin returned to the road and continued through the course. 

Just as in the NQE, the data needed to diagnose the true cause of this error was 
not being logged. Although code changes could have been made to add this data to 
the localization logs, the team decided that this was an unnecessary code change 
and that there was not sufficient time to test for unexpected errors before the final 
competition. 

5.2.2   IBEO Reset 
A known problem with the IBEO sensors was that occasionally the internal ECU 
factory software would freeze, resulting in no scan or object data being 
transmitted to the classification software module. No specific cause could be 
identified for this problem; however it often occurred after the ECU software had 
been running for over four hours. To remedy this situation, a health monitoring 
routine had been built into the sensor interface code. When the interface fails to 
receive sensor data for a full second, it can stop Odin by reporting an error to the 
Health Monitoring module. If the connection is not restored within five seconds 
the power is cycled to the IBEO ECUs to reset the software. This reset takes 
approximately 90 seconds, and the vehicle will remain in a paused software state 
until sensor data is restored. During the 3rd mission of the UCE, this ECU software 
freeze occurred as Odin approached one of the four-way intersections. The 
software correctly identified this failure and cycled power to the sensors. After the 
reset time elapsed, Odin was able successfully proceed through the course without 
any human intervention. 

5.2.3   Phantom Object 
Early in the race, Odin travelled down the dirt road on the south east section of the 
RNDF. Without incident, Odin traversed the road up until the road began bending 
left before entering Phantom East. Odin slowed to a stop prior to making this last 
turn and waited for close to a minute. The forward spacing enforcer was keeping 
Odin from going further because Object Detection was reporting a dynamic 
obstacle ahead in the lane. Due to the method in which dynamic obstacles are 
calculated, the berm to Odin’s left had a shape and height that appeared to be a 
vehicle. Had sparse lane detection been enabled for the race, Odin would have 
corrected the actual location of the road and Object Classification’s road filter 
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would have surely eliminated the berm as a possible vehicle. However, since this 
was not in place, Odin was doomed to wait indefinitely. The vehicle was never 
classified as disabled, because the RNDF prohibited passing in a one-way road. 
Otherwise, Motion Planning would have easily navigated Odin beyond the 
phantom object. Fortunately, due to a small amount of GPS drift to the south the 
forward spacing enforcer allowed Odin to pass due to an acceptable clearance 
between Odin, the berm to the right, and the phantom object still in view. The 
conditions that allowed Odin to pass were similar to conditions experienced in the 
gauntlet with cars parked on the side of the road. In the end, had localization data 
been more accurate, Odin may have waited forever. 

5.2.4   Road Detection 
The cubic spline interpolation of the RNDF provided Odin with smooth paths to 
drive that followed the curvature of the roads exceptionally well. Driving directly 
to waypoints was not sufficient for navigating the Victorville RNDFs. There were 
only two instances during the Urban Challenge events where Odin drove over the 
curbs due to splining issues rather than localization errors. One example is in lane 
8.1 which was the entry lane to the parking zones in the UCE RNDF. Figure 19 
displays the Report Lane Position output (overlaid on upper lane). Based on the 
image, the spline follows the roads. However, the curb in the right turn of this s-
curve was clipped every time Odin drove down this lane. This issue was due to 
tight geometry of the lane, the curvature control limitations of the chosen 
implementation of cubic splines, and human error in checking the RNDF 
preprocessing.  

 

Fig. 19. Report Lane Position overlay for lane 8.1 of the UCE RNDF where Odin clipped  
a curb 

5.3   Driving Behaviors 

During the UCE, Driving Behaviors performed well, with no major issues. Below 
are detailed some of the interesting situations Odin encountered in the UCE. 

5.3.1   Intersections 
Odin handled intersections well in the UCE, according to logs, team observation, 
and the driver of Odin’s chase vehicle. During several merge scenarios, Odin 
encountered traffic cars or other robots; however in less than 5% of 4-way stop 
scenarios did Odin have to respect precedence for cars arriving before him. It is 
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interesting to note that on several occasions, Odin observed traffic vehicles and 
chase cars roll through stop signs without ever stopping. On one occasion, after 
properly yielding precedence to Little Ben from U-Penn, Odin safely yielded to 
Little Ben’s chase car, which proceeded out of turn at a stop sign despite arriving 
at the intersection after Odin. 

5.3.2   Passing and Blocked Roads 
At no time during the UCE did Odin encounter a disabled vehicle outside of a 
safety area or blocked road requiring a replan. 

5.3.3   Parking Lot Navigation 
Odin performed extremely well in the zone navigation/parking portions of the 
UCE; however the missions were very easy in comparison to pre-challenge testing 
performed by the team. While each of the three UCE missions contained only one 
parking spot (and the same one each time), Odin was prepared for much more 
complicated parking lot navigation. The team had anticipated missions with 
multiple consecutive parking checkpoints in the same zone but in different rows, 
requiring intelligent navigation from spot to spot, travelling down the accepted 
patterns (parking rows). A special strategy was even implemented to navigate 
parking lots with diagonally oriented spots, travelling down the rows in the correct 
direction. 

While Odin was over-prepared for more complex parking lots, dynamic 
obstacle avoidance in zones was weak however, having seen far less testing. For 
this reason, the Route Planner gave zones a higher time penalty. 

5.4   Motion Planning  

One of Odin’s key strengths in performance was smooth motion planning that 
maintained the maximum speed of a segment or a set global maximum of 10 m/s. 
The motion planning used on Odin was flexible enough to be used for all 
situations of the challenge such as road driving, parking and obstacle avoidance. 
By handing the problem of motion planning in a general sense, goals and 
weightings could be adjusted for new situations, but the core motion planning 
would ensure that no obstacles would be hit. 

Reviewing race logs, there was one situation where more robust motion 
planning would have been required during the UCE. This occurred when Odin 
was traveling east on Montana and was cut-off by Stanford’s Junior taking a left 
off of Virginia. Since Odin had the right-of-way, the motion planning algorithm 
would not slow down until Junior had mostly entered and been classified in 
Odin’s lane. This situation was tested prior to competition, and Odin would have 
likely stopped without hitting Junior, but it would have been an abrupt braking 
maneuver. However, before the speed limiter of Motion Planning engaged, the 
safety driver paused Odin to prevent what was perceived as an imminent collision. 
More reliable classification of vehicle orientation and speed would allow motion 
planning to consider a wider range of traffic obstacles and apply brakes earlier in a 
similar situation. 
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6   Overall Successes 

All of the teams in the Urban Challenge produced amazing results considering the 
scope of the project and short timeline. This section provides examples of the 
characteristics and tools of team VictorTango that increased productivity to 
accomplish the required tasks to successfully complete the Urban Challenge. 

6.1   Base Vehicle Design 

The Ford Escape hybrid platform used for Odin proved to be an excellent 
selection. The vehicle was large enough to accommodate all of the required 
equipment, but was not so large that tight courses posed maneuvering difficulties. 
The seamless integration of the drive-by-wire system proved highly reliable and 
was capable of responding quickly to motion planning commands. The power 
available from the hybrid system enabled the vehicle to easily power all systems 
and to run for more than 18 hours continuously. Good design combined with 
attention to detail in execution produced an autonomous vehicle that offered great 
performance and suffered very few hardware failures, enabling the team to focus 
testing time on software development. 

6.2   Software Development 

This section provides the features and tools used by the team for rapid software 
development, testing and debugging, and error handling. These attributes helped 
Odin emerge as a successful competitor in the Urban Challenge. 

6.2.1   Software Architecture 
During the initial planning and design phases of the project, team VictorTango 
spent a significant amount of time breaking down the Urban Challenge problem 
into specific areas. The resulting subset of problems then became the guiding 
force in the overall software architecture design. This yielded an extremely 
modular architecture and also ensured that a clear approach to all the main 
problems was addressed early on. Evidence of this foresight is the fact that the 
software architecture is almost exactly the same as it was originally conceived in 
early January of 2007. Slight modifications were made to some of the messages 
between software components, but in general, the original approach proved to be 
very successful. 

Another benefit to the modular architecture was that it suited team 
VictorTango’s structure very well. The size and scope of each software 
component could be developed by one or two principal software developers. 
Along with open communication channels and strong documentation, the team 
was able to tackle all of the Urban Challenge sub-problems in a methodical, 
efficient manner. Furthermore, by avoiding any sort of large, global solver, or all-
encompassing artificial intelligence, team VictorTango’s approach provided more 
flexibilty. The team was not pigeon-holed into any one approach and could find 
the best solution for a variety of problems. Finally, the modular architecture 
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prevented setbacks and unforeseen challenges from having debilitating effects as 
they might with less diverse systems. 

Finally, the decision to implement the Joint Architecture for Unmanned 
Systems (JAUS) for inter-process communications in Odin offered several key 
advantages. Primarily, JAUS provided a structure for laying out software modules 
in a peer-to-peer, modular, automatically reconfigurable, and reusable fashion. It 
provided a framework for inter-process communication inside and across 
computing nodes, and a set of messages and rules for dynamic configuration, 
message routing, and data serving. Finally, the implementation of JAUS ensured 
that software developed under the Urban Challenge is reusable in future robotics 
projects, a critical step in accelerating the progress of unmanned systems. 

6.2.2   Simulation 
A key element of the software development was a custom developed simulation 
environment, shown in Figure 20 presenting Odin with a simulated road blockage. 
The simulator was used in all phases of software development, including: initial 
development, software validation, hardware-in-the-loop simulation, and even as a 
data visualization tool during vehicle runs. An easy to use simulator allowed 
software developers to obtain instant feedback on any software changes made as 
well as allowing other members of the team to stress test new software before 
deploying it to the vehicle. 

Testing also involved more stringent validation milestones. Typically the first 
milestone for a new behavior involved a software validation. Software validations 
consisted of running software components on the final computer hardware with all 
perception messages being supplied by the simulator and all motion commands 
being sent to the simulator. These validations were run by the test team which 
would provide a set of different scenarios saved as separate scene files. After a 
successful software validation, some behaviors required hardware-in-the-loop 
simulation. In these simulations, the software was running on Odin in a test course 
and the software was configured to send motion commands to Odin as well as the 
simulator. The simulator would produce obstacle messages, allowing Odin to be 
tested against virtual obstacles and traffic eliminating any chance of a real 
collision during early testing.  Lastly, in final validation, the simulator was used as 
a visualization tool during real-world testing.  

6.2.3   Data Log Replay 
Instrumental in diagnosing and addressing failures was a data logging and replay 
system integrated at the communications level. Called Déjà Vu, the system 
amounted to logging all input JAUS messages between modules for later playback 
in near real-time. During diagnostics, the component under analysis operated just 
as it did on the vehicle, only with the messages replayed from the Déjà Vu files. 
Additional features allowed logged data and Odin’s position to be visualized in the 
simulator’s 3D view as well. 

Déjà Vu was critical in solving the problems encountered during NQE. In a 
typical scenario, the logged messages were played into the software as it ran in  
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Fig. 20. Screenshot of simulated Odin encountering a roadblock 

source code form, allowing diagnostic breakpoints and probes to be used during 
playback. Once the problem had been diagnosed and a solution implemented, the 
new software was verified against the same logged data to verify the software 
made the intended decision. 

Finally, by integrating Déjà Vu logging directly into the TORC JAUS Toolkit, 
it remained independent of the primary software module’s functionality. As such, 
Déjà Vu is immediately reusable tool for future use in other projects. 

7   Conclusions 

Team VictorTango successfully completed the DARPA Urban Challenge final 
event, finishing 3rd, shown in Figure 21. During the competition, Odin was able to 
drive several hours without human intervention, negotiating stop sign intersections, 
merging into and across traffic, parking, and maintaining road speeds. Heightening 
the challenge was a very aggressive development timeline and a loosely defined 
problem allowing for many unknown situations. These factors made development 
efficiency as well as testing key components for success.  

The aspect of the challenge that gave team VictorTango the most difficulty was 
environmental sensing. Unreliable sensing at longer distances was a major factor 
in limiting the vehicle maximum speed to 10 m/s. This speed limit and especially 
delays due to falsely perceived obstacles added significant time during the final 
event. The vertical field of view of sensors on the market today is a major limiting 
factor, especially in laser rangefinders. New technology such as the IBEO Alasca 
XT sensors and the Velodyne laser rangefinder are beginning to address these 
issues, but are relatively new products that are still undergoing significant design 
modifications. The use of prototype products in a timeline as short as the Urban 
Challenge introduces risk, as functions may be unreliable or settings may change.  
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Fig. 21. Odin crosses the finish line. 

When evaluating the performance and design of vehicles participating in the 
DARPA Urban Challenge, it is important to consider the short development  
timeline of 18 months. Due to funding and organization, team VictorTango had 
closer to 14 months of actual development time. For example, road detection 
algorithms using vision were developed, and good results were achieved in certain 
conditions, but the team felt the software was not mature enough to handle all the 
possible cases within the scope of the urban challenge rules. A LIDAR road 
detection algorithm gave more consistent results over a wider variety of terrain, 
but had limited range requiring a reduction in travel speed. These results are more 
of a product of the development time and number of team members available to 
work on road sensing, rather than the limitations of the technology itself. With the 
short timeline, the team chose to use roads defined entirely defined by GPS, 
causing failures on at least 3 occasions during the race and NQE. 

The Urban Challenge event demonstrated to the world that robot vehicles could 
interact with other robots and even humans in a complex environment. Team 
VictorTango has already received feedback from industry as well as military 
groups wanting to apply the technology developed in the Urban Challenge to their 
fields immediately.  
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