
M. Buehler et al. (Eds.): The DARPA Urban Challenge, STAR 56, pp. 125–162.
springerlink.com © Springer-Verlag Berlin Heidelberg 2009

Odin: Team VictorTango’s Entry in the
DARPA Urban Challenge

Charles Reinholtz, Dennis Hong2, Al Wicks2,
Andrew Bacha3, Cheryl Bauman3, Ruel Faruque3, Michael Fleming3,
Chris Terwelp3, Thomas Alberi4, David Anderson4, Stephen Cacciola4,
Patrick Currier4, Aaron Dalton4, Jesse Farmer4, Jesse Hurdus4, Shawn Kimmel4,
Peter King4, Andrew Taylor4, David Van Covern4, and Mike Webster4

1 Department of Mechanical Engineering
Embry-Riddle Aeronautical University
Daytona Beach, FL 32114
charles.reinholtz@erau.edu

2 Department of Mechanical Engineering
Virginia Tech
Blacksburg, VA 24060

3 TORC Technologies, LLC
Blacksburg, VA 24060

4 Unmanned Systems Group
Virginia Tech
Blacksburg, VA 24060

Abstract. The DARPA Urban Challenge required robotic vehicles to travel over 90km
through an urban environment without human intervention and included situations such as
stop intersections, traffic merges, parking, and road blocks. Team VictorTango separated
the problem into three parts: base vehicle, perception, and planning. A Ford Escape
outfitted with a custom drive-by-wire system and computers formed the basis for Odin.
Perception used laser scanners, GPS, and a priori knowledge to identify obstacles, cars, and
roads. Planning relied on a hybrid deliberative/reactive architecture to analyze the situation,
select the appropriate behavior, and plan a safe path. All vehicle modules communicated
using the JAUS standard. The performance of these components in the Urban Challenge is
discussed and successes noted. The result of VictorTango’s work was successful
completion of the Urban Challenge and a third place finish.

1 Introduction

On November 3rd, 2007, DARPA hosted the Urban Challenge, an autonomous
ground vehicle competition in an urban environment. To meet this challenge,
Virginia Tech and TORC Technologies formed team VictorTango, a collaborative
effort between academia and industry. The team includes 46 undergraduate
students, 8 graduate students, 4 faculty members, 5 full time TORC employees
and industry partners, including Ford Motor Co. and Caterpillar, Inc. Together

126 C. Reinholtz et al.

team VictorTango and its partners developed Odin, a 2005 Ford Hybrid Escape
modified for autonomous operation.

In the weeks prior to competition, 35 teams prepared for the National
Qualifying Event (NQE). Vehicles had to navigate various courses, merge with
traffic, navigate cluttered roads and zones, park in full parking lots, and detect
road blocks. After a rigorous qualifying event, only 11 teams were deemed ready
by DARPA to line up in the start chutes of the final Urban Challenge Event
(UCE). The vehicles had to navigate similar situations to those they encountered
during the NQE. However, each vehicle also had to share the road with the other
10 autonomous vehicles, 10 chase vehicles, and 50 human-driven traffic vehicles.
Six of the eleven vehicles finished the race. This paper provides a summary of the
approach, final configurations, successes, and incidents of the third place team,
VictorTango.

1.1 VictorTango Overview

Team VictorTango divided the problem posed by the Urban Challenge into three
major parts: base vehicle platform, perception, and planning. Each of these
sections was then subdivided into distinct components for parallel development.
Team members were able to split up the required tasks, execute and debug them
individually, and provide finished components for full system testing. This
modular approach provided the rapid development time needed to complete a
project of such magnitude in only 14 months. This section provides a description
of the components that constitute the team’s approach.

1.2 Base Vehicle Platform

Team VictorTango’s entry in the Urban Challenge is a modified 2005 Hybrid Ford
Escape named Odin, shown in Figure 1. This base vehicle platform meets the
DARPA requirement of a midsize commercial automobile with a proven safety
record. The use of the hybrid-electric Ford Escape provides numerous advantages
in the areas of on-board power generation, reliability, safety and autonomous
operation. As required by DARPA, the drive-by-wire conversion does not bypass
any of the OEM safety systems. Since the stock steering, shifting and throttle
systems on the Hybrid Escape are already drive-by-wire, these systems can be
controlled electronically by emulating the command signals, eliminating the
complexity and failure potential associated with the addition of external actuators.
The stock hybrid power system is able to provide sufficient power for sensors and
computers without the need for a separate generator.

Odin’s main computing is supplied by a pair of Hewlett-Packard servers each
of which are equipped with two quad-core processors. One of the servers runs
Microsoft Windows XP and is dedicated to sensor processing. Windows was
selected since some of the sensor processing software uses National Instruments’
LabVIEW Vision development module, requiring Windows. The other server runs
Linux and is further subdivided into four virtual machines for process load
balancing and isolation. The Linux system, selected for its configurability and

Odin: Team VictorTango’s Entry in the DARPA Urban Challenge 127

Fig. 1. External view of Odin with sensors labeled

stability, runs all of the decision making and planning modules. The vehicle
hardware is controlled by a National Instruments CompactRIO unit, which
contains a real-time capable OS and an FPGA. The primary communications
backbone is provided by a gigabit Ethernet network.

1.3 Perception

To fulfill the behavioral requirements of the Urban Challenge, Odin must first be
able to adequately localize its position and perceive the surrounding environment.
Since there may be sparse waypoints in an RNDF and areas of poor GPS
coverage, the surrounding road coverage and legal lanes of travel must also be
sensed. Finally, Odin must be able to perceive all obstacles in its path and
appropriately classify obstacles as vehicles.

For each perception requirement, multiple sensors are desirable to achieve the
highest levels of fidelity and reliability. To allow for maximum flexibility in
sensor fusion, the planning software does not use any raw sensor data; rather it
uses a set of sensor-independent perception messages. The perception components
and the resulting messages are shown in Figure 2. The Localization component
determines the vehicle position and orientation in the world. The Road Detection
component determines a road coverage map as well as the position of each lane in
nearby segments. The Object Classification component detects obstacles and
classifies them as either static or dynamic. A dynamic obstacle is any obstacle that
is capable of movement, so a stopped vehicle would be classified as a dynamic
obstacle with zero forward velocity.

128 C. Reinholtz et al.

Fig. 2. Perception structure overview

1.4 Planning

The planning software on Odin uses a Hybrid Deliberative-Reactive model
dividing upper level decisions and lower level reactions into separate components.
These components run concurrently at independent rates, allowing the vehicle to
react to emergency situations without needing to re-plan an entire route. Splitting
the decision making into separate components also allows each system to be tested
independently and fosters parallel development, which is especially attractive
given the short development timeline of the DARPA Urban Challenge.

Fig. 3. Planning structure overview

Odin: Team VictorTango’s Entry in the DARPA Urban Challenge 129

The Route Planner component is the coarsest level of planning and is
responsible for determining which road segments and zones the vehicle should use
to travel to all checkpoints. The Driving Behaviors component is responsible for
obeying the rules of the road and guiding the vehicle along the planned route. The
lowest level of the planning process is the Motion Planning component, which
determines the path and speed of Odin. Motion commands are then passed to the
Vehicle Interface to be translated into actuator control signals. An overview of the
planning process is shown in Figure 3.

2 Technical Approach

This section presents an overview of the major design choices made in the
development of Odin, focusing on perception and planning systems. In each of
these sections, an overview of the system function is given as well as the design of
key elements.

2.1 System Architecture and Communications

While previous Grand Challenges could be solved using a purely reactive software
architecture, the complex nature of the Urban Challenge necessitates a hybrid
solution. In addition to the simpler goal-seeking behavior required in the previous
challenges, Urban Challenge vehicles must maintain knowledge of intent,
precedence, and timing. With many concurrent perception and planning tasks of
varying complexity, priority, and computation time, parallelism is preferred to a
single monolithic Sense-Plan-Act structure (Murphy, 2000). In addition, the
complexity of the Urban Challenge problem necessitates a well-defined software
architecture that is modular, clearly segmented, robust, safe, and simple.

VictorTango’s software structure employs a novel Hybrid Deliberative-
Reactive paradigm. Odin’s perception, planning, and acting occur at several levels
and in parallel tasks, acting on the most recent information received from other
modules. With traditional Hybrid architectures, deliberative components are
usually kept at a high level, while the more reactive, behavior-based, components
are used at a low-level for direct actuator control (Konolige, 1998 and Rosenblatt,
1995). With the rapid growth of computing technology, however, there has been a
re-emergence of deliberative methods for low-level motion planning (Urmson,
2006, and Thrun, 2006). Search-based approaches provide the important traits
of predictability and optimality, which are useful from an engineering point of
view (Russel, 2003). VictorTango’s system architecture therefore exhibits a
deliberative-reactive-deliberative progression. As a result, the scope of a
behavioral control component can be moved from low-level reflexes to higher-
level decision making for solving complex, temporal problems. An overview of
the hybrid mixture of deliberative planning, reactive navigation, and concurrent
sensor processing is shown in Figure 4. Each of the modules is further detailed in
the following sections.

130 C. Reinholtz et al.

SAE AS-4 JAUS (Joint Architecture for Unmanned Systems) was implemented
for communications, enabling automated dynamic configuration and enhancing the
future reusability and commercialization potential of DUC software. Each software
module is implemented as a JAUS component with all interactions to and from
other modules occurring via JAUS messages. As such, each software module
operates as a standalone component that can be run on any one of the computing
nodes. Since dynamic configuration and data subscription is handled via JAUS, the
system is highly reconfigurable, modular, expandable, and reusable beyond the
Urban Challenge. An additional benefit of employing a communications standard
toolkit was the easy integration of logging and simulation (both discussed further in
section 6).

Fig. 4. System Architecture for Odin, omitting Health Monitor connections for clarity

2.2 Perception

Perception is defined to include all aspects of the design necessary to sense the
environment and the vehicle’s position in it. Each perception module transforms
raw data collected from multiple sensors into information useful to the decision
making software.

Odin: Team VictorTango’s Entry in the DARPA Urban Challenge 131

2.2.1 Sensor Layout
The sensor coverage for Odin is shown in Figure 5. The largest portion of Odin’s
detection coverage is provided by a coordinated pair of IBEO Alasca XT Fusion
laser rangefinders. This system comprises two 4-plane, multi-return rangefinders
and a single external control unit (ECU) that covers a 260 degree field of view as
shown in Figure 5. The system has an advertised range of almost 200 meters,
although the effective range to reliably identify most objects has been shown in
testing to be closer to 70 meters. A single IBEO Alasca A0 unit with a field of
view of 150-degrees is used to detect approaching vehicles behind Odin and
navigate in reverse. The Alasca A0 is an earlier generation Alasca sensor than the
XT, and testing has shown a lower range of approximately 50 meters for reliable
object classification.

Fig. 5. Odin’s sensor coverage. The colored areas indicate the maximum range of the
sensor or the point at which the sensors scanning plane intersects the ground. Odin is facing
to the right in this figure.

For short range road detection and obstacle detection, two additional SICK
LMS 291 laser rangefinders are angled downward on the front corners of the roof
rack. These sensors are able to detect negative obstacles and smaller obstacles that
may be underneath the IBEO XT vertical field of view. Two side-mounted SICK
LMS 291 single plane rangefinders are used to cover the side blind spots of the
vehicle and ensure 360-degree coverage. The side mounted SICK LMS sensors
are primarily utilized during passing maneuvers.

Two IEEE 1394 color cameras were intended to supplement the IBEO obstacle
classification software and perform road detection, but were not used in the final
competition configuration. In combination, the cameras cover a 90-degree
horizontal field of view in front of Odin, and each transmit raw 1024 by 768
images at 15 frames per second.

132 C. Reinholtz et al.

2.2.2 Road Detection
The Road Detection software component provides information about nearby roads
and zones in the form of lanes (Report Lane Position) and overall drivable area
(Drivable Area Coverage). Report Lane Position describes the available lanes of
travel, and is used for decision making, vehicle navigation, and dynamic obstacle
predictions. Drivable Area Coverage defines all areas available for Odin to drive,
which is applied as a road filter for detected objects, and is used to assist with
zone navigation. These two outputs are generated from three different sources: the
RNDF, vision data, and SICK LIDAR data. The RNDF is used to define all lanes
and drivable areas within a certain range of the vehicle. The sensor data is then
used to better define roads when the waypoints are sparse or GPS coverage is
poor. Both SICK LIDAR and vision processing can be manually enabled or
disabled if not needed due to the configuration of the current course.

RNDF Processing
The basis for the Road Detection module is the Route Network Definition File
(RNDF) supplied by DARPA. The specified lanes and exit-entrance pairs in the
file are preprocessed to automatically to create continuous paths for Odin. Cubic
spline interpolations produce a piecewise continuous curve that passes through all
waypoints in each lane. This interpolation uses a cubic function, the waypoint
positions, and a desired heading to ensure a smooth transition between adjoining
pieces of the lane (Eren, 1999). The cubic function used to define the spline
interpolation is:

()
() yyyy

xxxx

ducubuauy

ducubuaux

+++=

+++=
23

23

where x(u) and y(u) are the point position at u which is incremented from zero to
one to generate the spline interpolation between two points. The eight unknowns
of these two equations (ax, bx, cx, dx, ay, by, cy, dy) can be determined using the
eight boundary conditions set by the waypoint positions and desired headings:

()
()
() ()
() ()kk

kk

k

k

ppcp

ppcp

pp

pp

−=′
−=′

=
=

+

−+

+

22
1

112
1

1

1

0

1

0

where pk-1, pk, pk+1, and pk+2 represent the waypoint positions (x and y), and c is the
desired curvature control. In matrix form, this set of equations for a spline
interpolation between two points is as follows:

Odin: Team VictorTango’s Entry in the DARPA Urban Challenge 133

()
()
()
() ⎥

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−

−
−

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+

+

−+

−+

+

+

kk

kk

kk

kk

k

k

k

k

y

y

y

y

x

x

x

x

yyc

xxc

yyc

xxc

y

x

y

x

d

c

b

a

d

c

b

a

22
1

22
1

112
1

112
1

1

1

01230000

00000123

01000000

00000100

11110000

00001111

10000000

00001000

After solving for the unknowns, u is incremented at the desired resolution, or
number of points, to create the interpolation between the two waypoints. The
curvature control variable can be adjusted to increase or decrease the curvature
between the points. This splining is also used to generate the desired path (termed
a “lane branch”) through intersections for every exit-entrance pair. Branches
extend a lane from an exit point to the entrance point of a connecting lane,
allowing lane maintenance to guide a vehicle through an intersection. Figure 6
shows an example spline interpolation for a 90o right turn (e.g. a typical right turn
at a four-way intersection). The plot on the left shows an ideal spline for this
intersection while the plot on the right shows the effect of a lower curvature
control value. Four waypoints, shown as round points, are required for a cubic
spline interpolation. The linear connection between these points is shown as the
dashed line for visual reference. The cubic spline interpolation with a resolution of
five points is the solid line with square points.

Fig. 6. Example cubic spline interpolation for a 90o right turn with an ideal spline (left).
The effect of a lower curvature control value is also plotted (right). Waypoints are the
round points. Spline interpolation is the solid line with square points. For visual reference,
linear connections are shown by the dashed line.

134 C. Reinholtz et al.

All splining for the RNDF is preprocessed when an RNDF is loaded. As Odin
drives the RNDF, nearby lanes and intersections are extracted and assembled into
the Report Lane Position output. This output creates the possible paths for Odin
and other sensed vehicles. The Report Lane Position software was developed to
automatically generate these cubic spline interpolations for an entire RNDF. This
is achieved in two steps using the geometry between waypoints. First, it is
determined whether or not spline interpolation is necessary. In other words, a
series of straight waypoints or a straight through intersection does not require
cubic splining, but traveling around a traffic circle would. Next, the curvature
control is selected for the locations that required splining using the distance
between waypoints, the previous and future desired headings, and knowledge
gained from cubic spline data analysis. The automatic spline generator was
originally designed to guide Odin through intersections as a human driver would,
and therefore performed close to flawlessly in these more open navigation
situations. Lane splines, on the other hand, required much more precision to
follow the course of the road. The splining process always provided smooth paths
for the vehicle, but lacked the realization of the actual geometry of the roads and
intersections.

A solution to this problem was to compare the cubic spline output to geo-
referenced aerial imagery, which was guaranteed to be supplied by DARPA for
the competition. Using this information, the spline curvatures could be manually
adjusted to help ensure the splined lane positions match the physical lanes in the
road network. Therefore, the RNDF processing software was modified to accept
manual overrides to the generated splines, and save a configuration file if changes
were required. Figure 7 shows an example of comparing the splined Report Lane
Position output (bright overlays) to the actual road (outlined by the beige curbs) in
the geo-referenced aerial imagery of Victorville.

Fig. 7. Example of the splined lane positions (bright overlays) output matching the actual
roads in the aerial imagery. The road displayed is segment 11 of the UCE RNDF.

RNDF based Drivable Area Coverage uses a combination of the splined Report
Lane Position output and the zones from the RNDF. This is also preprocessed to
create the Drivable Area Coverage for the entire course. During operation, the
drivable area within range of Odin is extracted and output as a drivable area map.
This drivable area map is a binary image that marks all nearby areas in which
Odin or another vehicle can be expected to operate.

Odin: Team VictorTango’s Entry in the DARPA Urban Challenge 135

Sensor Data
Odin also uses LIDAR data to supplement the RNDF generated lane and road
positions. The two forward-looking SICK LIDAR identify the road by looking for
rapid changes in range that result from discontinuities in a flat road surface, such
as those caused by curbs, potholes, and obstacles. The SICK LIDAR are
positioned at different vertical angles to allow the algorithm to analyze multiple
returns on the same features.

Lane positions can be predicted by fitting probable road boundary locations
through a second-order least squares regression analysis. Given the locations
classified as potential curb sites by the LIDAR, the curb points are defined as the
points that follow the previous estimate inside an allowable scatter. This scatter is
determined by the standard deviation of the previous estimate and is weighted to
allow more points closer to Odin and to select the closest curb boundary detected.
Figure 8a shows logged data indicating all potential curb points, the subset used in
the regression, and resulting boundary curves. Lane position can then be
determined by referencing the expected number of lanes in the RNDF. The
RNDF-based Report Lane Position output can be augmented with these sensed
lanes. Figure 8b shows an aggregation of the curb points previously used in the
regression traveling down a two lane road. The curb points follow the shape of the
of the road, but as shown in Figure 8a, detection only reaches 10-15 meters in
front of the vehicle, requiring software to slow the speed of the vehicle to maintain
safe operation.

In addition to LIDAR, computer vision approaches were also attempted for
detecting lanes as well as improving the drivable area coverage map. The visual
lane detection software uses image intensity to distinguish bright lane boundaries

(a) (b)

Fig. 8. LIDAR based road detection results: (a) A single frame of potential curb points in
world frame with points used in the regression darkened. The regression output curve is the
dashed line. Grid spacing is 5 meters, and Odin is represented by the rectangle. (b) An
aggregation of all curb points previously used in the lane boundary regression along a
single road, plotted in UTM coordinates.

136 C. Reinholtz et al.

from the darker surrounding areas of the road surface. Edge detection is applied to
the results of the intensity operation, separating out the lines and edges of the road.
The position of each lane is found by fitting the strongest lines on the road to a
curve through a Hough transform (Duda, 1972). Vision was also used to improve
the drivable area coverage map in zones by finding low-profile islands usually
found in parking lots. These islands are often a different color than the
surrounding area, and therefore vision processing is ideal for detecting them. The
algorithm thresholds the entire image according to the absolute color of an area
directly in front of Odin, which is assumed to be drivable. Significant color
changes in this control area are ignored for a short period of time to improve this
assumption. The detected features are then subtracted from the Drivable Area
Coverage map generated from the RNDF. Both of these vision algorithms were
not used in the final competition due to a lack of sufficient testing and
development as further discussed in section 3.

2.2.3 Object Classification
The accurate identification and classification of objects is one of the most
fundamental and difficult requirements of the Urban Challenge. The vision system
and the laser rangefinders each have advantages and disadvantages for
classification. The IBEO rangefinders can determine the location of an object to
sub-meter accuracy, but they have poor classification capabilities. Vision-based
methods can result in accurate classification, but they are computationally
intensive and have a limited horizontal field of view and range.

The classification module splits all objects into one of two categories: static
objects that will not be in motion, and dynamic objects that are in motion or could
be in motion. Dynamic objects on the course are expected to be either manned or
unmanned vehicles. The core of the classification module, shown in Figure 9, is
the IBEO laser rangefinders. While visual methods of detection were examined,
they were determined to be too computationally intensive to return accurate
information about nearby objects, especially at higher vehicle speeds. This
problem is intensified due to the fact that multiple cameras are needed to cover a
full 360-degree sweep around Odin. The A0 and XT Fusion rangefinders cover
almost the entire area around Odin, and objects can be detected and segmented
using software available on the IBEO ECUs (Fuerstenberg, Dietmayer, Lages,
2003), (Fuerstenberg, Linzmeier, Dietmayer, 2003). These ECU objects serve as
the basis for the module. However small deviations in the laser pulse’s reflection
point and time of flight often causes variations in the results of the built-in
segmentation routines. To account for these variations a filter is applied that
requires each object to have been detected and tracked for a short but continuous
period of time before the object is considered valid. The positions of these valid
objects are then checked against the Drivable Area Coverage map; anything not on
or close to drivable area is considered inconsequential and is not examined.

Once these detected objects are sufficiently filtered through their position
and time of detection, their characteristics are passed to a classification center
for verification. Through testing, the IBEOs have proven to be accurate in

Odin: Team VictorTango’s Entry in the DARPA Urban Challenge 137

Fig. 9. The Object Classification module localizes and classifies all perceived objects

determining a moving object’s velocity, and it is assumed that all large moving
objects are vehicles. It is also important for the system to detect stationary vehicles
in front of Odin for situations such as intersection queuing and precedence. The
initial software design included verification of object classification using
monocular image processing. The real-world locations of objects obtained from
the IBEOs are transformed into regions of interest within the image, which are
searched for features common to cars such as tail lights and tires (Cacciola, 2007).
By restricting processing to these regions, high resolution imagery could be used
without the usual processing penalty. This feature was effective at correcting
groups of static obstacles being incorrectly classified as a dynamic obstacle.
However there was an inadequate amount of test time logged to verify that certain
critical failure modes, such as the vision system incorrectly identifying a dynamic
object as static or the correct handling of complete vision outages due to poor
lighting conditions, would not occur. Therefore, the vision portion of the
classification module was not used in the final competition.

2.2.4 SICK LIDAR Based Detection
The four SICK LMS-291 units on Odin were used for close-range object
detection. The two side-mounted SICK LIDAR are devoted to blind spot
checking. Figure 10 shows a history of LIDAR objects after being transformed
into vehicle frame. If the areas adjacent to the vehicle sides have a return that is
above a height threshold, then the blind spot is reported as not clear.

The two front-mounted SICK LIDAR are used to detect objects that are within
close range of the vehicle but outside the IBEO’s vertical field of view. The
returns of these downward pointed laser rangefinders are segmented based on
range discontinuities and classified as road or an obstacle based on a height
threshold. This information is compared over multiple scans to capture the overall

138 C. Reinholtz et al.

Fig. 10. SICK LMS scan data transformed into vehicle frame. A (the outline of a car) has
been classified as an obstacle, B has been classified as drivable road, the circles are
potential curb sites. Grid spacing is 5 meters, and Odin is represented by the rectangle.

behavior of an object through time, and is used to reclassify the object if
necessary. Figure 10 shows an example of classifications derived from a SICK
scan cycle. This illustration also shows the potential curbs marked as circles.
These points are determined after the drivable area is distinguished, and defined as
points where the drivable area ends or had a sharp step in the profile.

2.2.5 Dynamic Obstacle Predictor
Once an object has been classified as a vehicle, it is monitored by the Dynamic
Obstacle Predictor, which predicts likely paths for each vehicle based on road data
and the motion history of the object. If there is no available lane data, such as in
zones or if a dynamic obstacle doesn’t appear to be following a lane, the Dynamic
Obstacle Predictor simply continues the current motion into the future. These
predictions are used by Driving Behaviors for traffic interaction at intersections
(such as merges) and Motion Planning for obstacle avoidance.

2.2.6 Localization
Odin has been equipped with a Novatel Propak LB+ system that provides a
filtered GPS/INS solution. In addition, wheel speed and steering angle
measurements are available from the vehicle interface. An Extended Kalman
Filter (EKF) has been developed using standard methodology (Kelly, 1994) that
combines these measurements with the goal of improving the Novatel solution
during GPS outages. In addition, this filter provides a means for incorporating
other absolute position measurements. The best case accuracy of the position
provided by this localization solution is 10 cm CEP.

A separate local position solution is also tracked in Odin’s localization
software. This solution provides a smooth and continuous position estimate that
places Odin in an arbitrary local frame. The goal of this position solution is to
provide perception modules with a position frame to place obstacles that is free of

Odin: Team VictorTango’s Entry in the DARPA Urban Challenge 139

discontinuities caused by GPS position jumps. This is accomplished by calculating
the local position using only odometry. This position typically drifts by 2.6% of
the total distance traveled by the vehicle; however, this error accumulation is
small enough that it does not cause significant position error within the range of
the vehicle’s perception sensors.

2.3 Planning

Decision making for Odin is handled by a suite of modules cooperating in a hybrid
deliberative-reactive-deliberative fashion. Each of the major components is
presented in sequence, from the top down.

2.3.1 Route Planning
The Route Planner component is the coarsest level of decision planning on Odin
as it only determines which road segments should be traveled to complete a
mission. It uses a-priori information such as the road network and speed limits
specified by the RNDF and MDF respectively, as well as blockage information
gathered during mission runs. After processing, the Route Planner outputs a series
of waypoint exits to achieve each checkpoint in the mission.

By only considering exit waypoints, it is easy to formulate the Route Planner as
a graph search problem. The Route Planner on Odin implements the A* graph
search method (Hart, 1968) using a time-based heuristic to plan the roads traveled.
While the A* search algorithm guarantees an optimal solution, it depends on the
validity of the data used in the search. The time estimate used during the search
assumes that the vehicle is able to travel at the specified segment speed limits, and
it uses predefined estimates of the time for typical events, such as the time taken
when traversing a stop line intersection, performing a U-turn, or entering a zone.

2.3.2 Driving Behaviors
Driving Behaviors is responsible for producing three outputs. First, Driving
Behaviors must produce a behavior profile command which defines short term
goals for Motion Planning in both roads and zones. Second, in the event of a road-
block, a new set of directions must be requested from the Route Planner. Finally
the turn signals and horn must be controlled to appropriately signal the intent of
the vehicle.

The behavior profile sent to Motion Planning comprises six target points, a
desired maximum speed, travel lane, and direction (Forward, Reverse, and Don’t
Care). Each target point contains a waypoint location in UTM coordinates, the
lane, and lane branch (for intersections). Target points can also contain optional
fields such as a stop flag and a desired heading. Lastly, the behavior profile also
contains zone and safety area flags to enable different behaviors in Motion
Planning.

Action-Selection Mechanism
Driving Behaviors must coordinate the completion of sophisticated tasks in a
dynamic, partially observable and unpredictable environment. The higher level

140 C. Reinholtz et al.

decision making being performed in Driving Behaviors must be able to handle
multiple goals of continually changing importance, noisy and incomplete
perception data, and non-instantaneous control. To do this, a Behavior-Based
Paradigm was implemented. The unpredictable nature of an urban environment
calls for a robust, vertical decomposition of behaviors. Other advantages of using a
Behavior-Based Paradigm include modularity, the ability to test incrementally, and
graceful degradation (Murphy, 2000). For instance, if a behavior responsible for
handling complex traffic situations malfunctions, simpler behaviors should still be
operable, allowing Odin to continue on missions with slightly less functionality.

As with any Behavior-Based architecture, implementation details are extremely
important and can lead to drastically different emergent behaviors. Coordination
becomes paramount since no centralized planning modules are used and control is
shared amongst a variety of perception-action units, or behaviors. In the Urban
Challenge environment, the problem of action selection in the case for conflicting
desires is of particular interest. For example the desire to drive in the right lane
due to an upcoming right turn must supersede the desire to drive in the left lane
due to a slow moving vehicle. Furthermore, due to the strict rules of urban
driving, certain maneuvers must be explicitly guaranteed by the programmer. To
address this problem, a method of behavior-selection is needed such that Driving
Behaviors will actively determine and run the most appropriate behaviors given
the current situation.

An arbitration method of action selection (Pirjanian, 1999) is used for the
Driving Behaviors module. In the above example of choosing the appropriate lane
to drive in, driving with two wheels in each lane is not an acceptable solution.
Therefore, a modified Winner-Takes-All (Maes, 1989) mechanism was chosen.
To address the situational awareness problem, a system of hierarchical finite state
machines is used. Such a system allows Driving Behaviors to distinguish between
intersection, parking lot, and normal road scenarios (Hurdus, 2008). The
implementation of finite state machines also provides resilience to perception
noise and by using a hierarchical system, concurrency is easily produced. The
overall architecture of Driving Behaviors is shown in Figure 11. A finite state
machine is used to classify the situation, and each individual behavior can be
viewed as a lower-level, nested state machine. The chosen Action Selection
Mechanism operates within the Behavior Integrator. This approach is considered
a modified Winner-Takes-All approach because all behavior outputs are broken
down into one of several categories, including, but not limited to, Target Point
Drivers, Speed Drivers, and Lane Drivers.

Passing and Blocked Roads
When driving down a normal section of road, (i.e. not in a safety zone
approaching an intersection, not in an intersection polygon, and not in a zone)

Odin: Team VictorTango’s Entry in the DARPA Urban Challenge 141

Fig. 11. Flow diagram of the Behavior-Based, Winner-Takes-All Driving Behaviors
implementation. Behavior Integrator ensures there is one winner from each driver category.

Odin runs three behaviors, the Route Driver, the Passing Driver, and the Blockage
Driver. The Route Driver is responsible for driving the route as close as possible
to the route originally provided by the Route Planner. If no obstacles or traffic are
ever encountered, then the Route Driver will maintain control of the vehicle
throughout all segments of the RNDF. When entering a new segment, for
example, the Route Driver will immediately attempt to move Odin to the correct
lane for the next exit.

The Passing Driver is concerned with getting around slow moving or disabled
vehicles. It is therefore responsible for monitoring other vehicles in the near
vicinity, deciding if a pass is necessary, and executing this pass in a safe and legal
manner. Awareness of the roads is necessary as the Passing Driver must
distinguish between passing in an oncoming lane and passing in a forward lane,
and subsequently check the appropriate areas for traffic. The Passing Driver does
not maintain knowledge of the overall route, so it is the responsibility of the Route
Driver to overrule the Passing Driver if a pass is initiated too close to an exit or
intersection.

Finally, the Blockage Driver maintains a current list of available lanes. If static
obstacles in the road or a disabled vehicle cause a lane to be blocked, the Blockage
Driver removes this lane from the available list. If all RNDF defined lanes are
removed from the list and at least one of these lanes is an oncoming lane, then the
Blockage Driver commands a dynamic replan. When this is necessary, the Route
Planner is first updated with the appropriate blockage information and all
behaviors are reset while a new route is generated.

The interaction of these three drivers was sufficient for giving Odin the ability
to pass disabled and slow-moving vehicles in the presence of oncoming and
forward traffic, pass static obstacles blocking a lane, pass over all checkpoints, be
in the correct lane for any exit, and initiate dynamic replans when necessary.

142 C. Reinholtz et al.

Intersections
To handle intersections, Odin uses three drivers (Precedence, Merge, and Left
Turn) in the Approaching Stop, Stop, Approaching Exit, and Exit situations. Of
special note is that all three drivers operate by monitoring areas where vehicles (or
their predictions) may be, rather than tracking vehicles by ID. While this decision
was initially made to deal with object tracking issues in early iterations of the
perception software, it turned out to greatly enhance the overall robustness of the
intersection behavior.

The Precedence Driver activates when Odin stops at junctions with more than
one stop sign. This driver overrides the Route Driver by maintaining the current
stop target point with a high urgency until it is Odin’s turn or a traffic jam has
been detected and handled. The Merge Driver activates at intersections where
Odin must enter or cross lanes of moving traffic, controlling the speed by
monitoring areas of the merge lane or cross lanes for vehicles or vehicle
predictions. To handle intersections with both moving traffic and other stop signs,
the Merge Driver cannot adjust the speed until the Precedence Driver has
indicated it is Odin’s turn or a traffic jam has been detected.

For turns off a main road (a case where the RNDF does not explicitly state right
of way via stop points), the Left Turn Driver activates when Odin’s desired lane
branch at an upcoming exit waypoint crosses over oncoming traffic lanes. In this
case, the Left Turn Driver overrides the Route Driver by setting the stop flag for
the exit target point. Once the exit waypoint has been achieved, the driver controls
the desired speed in the behavior profile while monitoring the cross-lanes for a
sufficient gap to safely achieve the left turn.

Parking Lot Navigation
In zones, the role of Driving Behaviors is to provide general zone traversal
guidance by controlling the behavior profile target points. Initially, VictorTango
planned to fully automate the first stage of this process – determining the accepted
travel patterns through a parking lot (along the parking rows). However, zones
containing only a subset of the actual parking spots (i.e. one spot per row) make it
difficult to automatically identify parking rows based on the RNDF alone. Since
this could very well be the case in the final event, a tool was designed to manually
place “control points” in the zone, in the form of a directionally-connected graph.

In the route building stage of Driving Behaviors, Odin performs a guided
Dijkstra search to select control points for navigating toward the parking spot and
reversing out of the spot. The Route Driver then guides Odin along this pre-
planned path. If the path is blocked, the Zone Driver can disconnect a segment of
the graph and choose a different set of control points. The parking maneuver is
signaled to Motion Planning by enabling the stop flag and providing a desired
heading on the parking checkpoint. To reverse out of the spot, the direction is
constrained to be only in reverse, and a target point is placed in order to position
Odin for the next parking spot or zone exit.

Odin: Team VictorTango’s Entry in the DARPA Urban Challenge 143

Driving Behaviors is not responsible for any object avoidance or traffic
behavior in zones. Motion Planning handles tasks such as steering to the right for
oncoming dynamic objects, performing the parking maneuver, and checking for
safe space to reverse out of the spot. This was primarily due to the largely
unknown environment in a zone, and the desire to keep Driving Behaviors
independent of the exact size and mobility constraints of the vehicle.

2.3.3 Motion Planning
Motion Planning is responsible for planning the speed and path of the vehicle.
Motion Planning receives behavior profiles, defined in section 2.3.2, from Driving
Behaviors and plans a series of motion commands called a motion profile. The
motion profile is a platform independent series of commands that include a desired
curvature, curvature rate of change, desired velocity, maximum acceleration and
time duration of each command. The motion profile consists of the entire path
planned by motion planning and typically contains 2-3 seconds of commands. A
platform independent motion profile message allows re-use of communication
messages across base platforms, and allows vehicle specific control loops to take
place in the Vehicle Interface. However, Motion Planning still requires a basic
model of the specific operating platform. In addition to commanding the Vehicle
Interface, Motion Planning can also provide feedback to Driving Behaviors about
whether the currently commanded behavior profile is achievable. This feedback is
critical when detecting a blocked lane or even an entirely blocked roadway.

Motion Planning is structured into two main components consisting of a Speed
Limiter and a Trajectory Search as shown in Figure 12. The Speed Limiter
commands a maximum speed based on traffic in the future path of Odin and
upcoming stop commands. Dynamic Obstacle predictions are analyzed to follow
slower moving traffic or to stop behind a disabled vehicle leaving enough room to
pass. The Speed Limiter sends Trajectory Search this maximum speed and an
obstacle ID if the speed is limited by a dynamic obstacle. The speed limiter is
disabled when traveling through zones, leaving Trajectory Search to handle all
dynamic obstacles.

The core of Motion Planning is the Trajectory Search module that simulates
future motion to determine a safe and fast path through the sensed environment.
Three main steps happen in Trajectory Search: (1) a cost map is created using lane
and obstacle data, (2) a series of actions is chosen to reach a goal state, and (3) the
series of actions is processed into a feasible motion profile. The Trajectory Search
plans with the assumption of an 80ms processing time. If run time exceeds 450ms
or all possible actions are exhausted, the goal criteria are declared unachievable.
Driving Behaviors is notified about the unachievable goal and a stop is
commanded, with urgency depending on the proximity of obstacles.

Trajectory Search uses a fixed grid size cost map to represent the environment
when solving for a motion path. The range and resolution of the cost map is
configurable, and the final configuration used a resolution of 20cm2 per cell,
extending 30m in front of the vehicle, and 15m behind and to the sides of the
vehicle. It is important to note that Driving Behaviors and the Speed Limiter

144 C. Reinholtz et al.

Fig. 12. Software flow diagram of the Motion Planning component

software did not use this cost map, allowing these modules to incorporate dynamic
obstacles beyond this range. The cost map stores costs as 8-bit values allowing
obstacles to be stored as highest cost at the obstacle and reduced cost around the
obstacle. Figure 13a shows an example cost map with costs added from obstacles
and lane boundaries. Dynamic obstacles are expanded to account for future
motion. However, this treatment of dynamic obstacles is very limiting, and
responding to dynamic obstacles is mainly the job of the Speed Limiter. If the
Speed Limiter is reacting to a dynamic obstacle, the ID is passed to Trajectory
Search and the obstacle is omitted from the cost map. Omitting these dynamic
obstacles prevents Trajectory Search from deciding a slower moving vehicle is
blocking a lane.

(a) (b)

Fig. 13. (a) Trajectory Search cost map with labeled features. (b) Trajectory Search cost
map with planned solution representing each action in a different color.

Odin: Team VictorTango’s Entry in the DARPA Urban Challenge 145

Once a cost map is created, Trajectory Search then produces a set of goal
criteria using data from the behavior profile such as: desired lane, zone, desired
gear and heading criteria. Goal criteria may be as simple as driving a set distance
down a lane or more specific such as achieving a desired position with a desired
heading. The search process starts with the current vehicle state and uses an A*
search to evaluate sequences of possible future actions. Each action consists of a
forward velocity and steering rate over a period of time. These actions are
evaluated by checking the predicted path of the vehicle due to the action against
the cost map as well as other costs such as distance from the lane center and time.
The search speed is improved by only using a finite set of possible actions that
have pre-computed motion simulation results (Lacaze, 1998). Figure 13b shows a
planned path with each action having a different color.

Odin uses a pre-computed results set with an initial steering angle varied at
0.25 degree increments, commanded steering rates varied from 0 to 18 degrees/sec
at 6 degree/second increments and commanded velocities ranging from 2 to 12.5
m/s at 3.5 m/s increments. The pre-computed results contained information
including which grid cells will be occupied as well as final state information. A
separate set of coarser results is used in situations where the vehicle is allowed to
travel in reverse. When creating a sequence of actions, the pre-computed
occupancy data is translated and rotated based on the previous ending state
conditions. When the search algorithm runs, actions that are dynamically unsafe or
have a commanded velocity too far from the previous velocity are filtered out.
After the search is complete, the list of actions is converted to a drivable series of
motion commands. This last step selects accelerations, and accounts for
decelerating in advance for future slower speeds. Steering rates are also scaled to
match the planned path if the vehicle is travelling at a different speed than
originally planned. The Trajectory Search solves the goal using the fastest possible
paths (usually resulting in smoother paths), and these speeds are often reduced due
to MDF speed limits or due to the Speed Limiter.

While traveling in segments, Trajectory Search chooses goals that travel down
a lane. In contrast, zone traversal is guided by target points along with goal criteria
and search heuristics to produce different behaviors. The behaviors include
forming artificial lanes to connect the points, a recovery behavior allowing the
vehicle to reverse and seek the center of the fake lane, and a wandering behavior
that uses no lane structure at all. These behaviors are activated by a simple state
machine that chooses the next behavior if the current behavior was resulting in
unachievable goals. Development time was reduced and reliability was improved
by using the same Trajectory Search algorithm in zones as well as segments.
While the overall behavior of the vehicle could be adjusted by changing the goals
and heuristics, the core functionality of planning fast collision-free motion
remained constant.

2.3.4 Vehicle Interface
The main role of the Vehicle Interface component is to interpret the generic
motion profile messages from Motion Planning, defined in section 2.3.3, and
output vehicle-specific throttle, brake, steering, and shifting signals. By accepting

146 C. Reinholtz et al.

platform independent motion commands and handling speed control and steering
control at a low level, any updates to the vehicle-specific hardware or software can
be made transparent to the higher level decision making components.
Additionally, the Vehicle Interface can actuate other vehicle systems such as
lights, turn signals, and the horn.

Closed loop speed control is provided by a map-linearized PID controller. The
controller, as shown in Figure 14, takes the output of the PID, band limits it to
control the maximum acceleration, and inputs it to a map lookup function to
produce a throttle or brake command. Terrain compensation is provided by a
proportional controller that estimates the longitudinal acceleration on the vehicle
and additively enhances the map input (Currier, 2008).

Fig. 14. Block diagram of speed controller showing PID controller, acceleration controller
and map lookup linearization function.

Steering control relies on a standard bicycle model to estimate the curvature
response of the vehicle (Milliken, 1995). This model can be shown to produce
estimates accurate enough for autonomous driving in the operational conditions
found in the Urban Challenge (Currier, 2008). The steering angle and rate
calculated by the bicycle model is tracked by a rate controlled PID loop to produce
the desired vehicle path.

3 Final Software Configuration

As the Urban Challenge approached, decisions had to be made for the final
software configuration to be used in the event to ensure adequate testing time.
These choices ranged from setting maximum/minimum parameters to disabling
software components. This section explains test procedures and rationale for the
final adjustments made to Odin’s software configuration.

3.1 Motion Planning Parameters

For all NQE runs as well as the final UCE, the maximum speed that Odin would
drive was limited to 10 m/s (22 mph). This allowed Odin to drive at the maximum
speed specified for all segments during NQE, and the maximum speed for all but

Odin: Team VictorTango’s Entry in the DARPA Urban Challenge 147

two segments on the UCE. The limiting factor in determining a safe maximum
speed was the distance that obstacles could be reliably detected. During testing,
the vehicle could smoothly drive roads at speeds of 13 m/s (29 mph), but would
occasionally stop very close to obstacles such as a disabled vehicle or roadblock.
This was due to hills or varying terrain causing obstacles to be out of the vertical
sensor field of view until Odin was closer to the obstacle.

3.2 Sparse Road Detection

Prior to competition, members of the team tested the road detection suite in a wide
variety of sparse waypoint scenarios. Odin was tested on various road
compositions including dirt, gravel, and asphalt roads. Lane definitions were also
varied. These tests were on well lined and poorly lined roads, as well roads with
curbs, drop offs, and ditches. Laser rangefinder based methods of lane detection
yielded reasonably robust results, but due to the possible variety of road surfaces
and markings, vision based methods were much less robust. The primary
challenge for lane detection was defining assumptions. The algorithm did not have
enough engineering time to handle all possible roads. Further, the sparse waypoint
example in the sample RNDF indicated that Odin would be required to negotiate
intersections in sparse scenarios, which through analysis became very demanding
on the algorithms.

As a result, the team felt comfortable that if sparse waypoints would be
required, this software could be turned on; but it was deemed that splining
waypoints would be the method of choice if the final event RNDF permitted.
Hence, before arriving in California, all code associated with vision based lane
detection was disabled, and an implementation of the software that allowed the
team to selectively disable/enable the laser rangefinder based lane detection was
put in place. This allowed the team to turn on laser rangefinder based lane
detection where certain conditions are met. Upon receipt of each RNDF, the team
would examine all points in the simulator visualization to determine if the
segments required the sparse waypoint algorithm to be enabled for that RNDF.
Due to the relative density of the waypoints in all events there was never a
requirement for this algorithm to be enabled.

3.3 Vision Drivable Area Coverage

As previously defined in section 2.2.2, the RNDF defines the drivable areas while
sensor data is used to verify the RNDF information and subtract out areas that
contained obstacles, such as landscaped islands in parking lots. After extensive
testing in various environments and lighting conditions, the vision Drivable Area
Coverage was not reliable enough to be trusted. It would occasionally produce
false positives that eliminated drivable areas directly in front of the vehicle when
no obstacles were present. Also, there were no un-drivable areas in zones present
during the NQE or UCE courses. The team decided that the laser rangefinders and
Object Classification were able to detect most static obstacles that would get in the
way of Odin. Therefore, vision Drivable Area Coverage was disabled to prevent

148 C. Reinholtz et al.

the vehicle from stopping and getting stuck in the event of a false positive
produced by the vision processing.

4 National Qualifying Event

The team spent many long days and nights testing and preparing for the Urban
Challenge NQE and UCE. This section presents and analyzes Odin’s performance
in the National Qualifying Event.

4.1 NQE A – Traffic

This NQE course challenged a vehicle’s ability to drive in heavy traffic while
balancing safety and aggressiveness. The first vehicle to perform at NQE course
A, Odin performed well, executing merges and left turns with only a few minor
errors. Odin also had no trouble with the k-rails surrounding the course that caused
many other teams problems when merging into traffic. The mistakes Odin made
were subsequently fixed and could be attributed to the following: needing to adjust
intersection commitment threshold, an IBEO region of interest bug, and false
object classifications.

To prevent Odin from slamming on the brakes and blocking an intersection,
Odin will commit to traversing an intersection once it has passed a calculated
threshold. This threshold is based on being able to stop without protruding into
traffic lanes. However, several times in Odin’s first run on NQE Area A, Odin
commanded a merge in the situation show in Figure 15. About 350 milliseconds
later, the previously occluded vehicle (4) suddenly appeared to sensors at a range
that would normally prevent Odin from commanding a merge. However, since the
stop line was very close to the cross-lane, Odin had already passed the commit
point and disabled the cancellation mechanism. For the second NQE run, the team
adjusted the commit point, allowing merges to be cancelled closer to the road. On
the second course A run, Odin performed satisfactorily with the occluded cars by
properly canceling the merge when the occluded vehicle was in view.

Fig. 15. A merge in NQE course A with an occluded vehicle (vehicle 4)

Odin: Team VictorTango’s Entry in the DARPA Urban Challenge 149

A bug in the IBEO factory software also resulted in Odin cutting off traffic
vehicles. The IBEO sensors allow a region of interest to be defined to reduce the
number of output objects, which is important given that the IBEO software has an
internal limit of 64 objects. This region is in the shape of a trapezoid defined by
its upper-left and lower-right corners. Objects filtered out by the region of interest
can still count towards the limit of 64, which could cause objects far away from
the vehicle to prevent closer objects from being returned. This behavior can be
prevented by enabling an option to only process scan returns into objects within
the region. However, if this option is enabled, the region is incorrectly defined as
the thin rectangle within the trapezoid, causing all of the pre-calculated regions to
be smaller than intended. Enabling this option was a configuration change enabled
shortly before the challenge, and the issue wasn’t discovered until after the second
NQE course run. Afterwards, the pre-calculated regions were redefined to ensure
that vehicles were always seen in time for the behavior software to correctly
interact with them.

The most serious incident on NQE course A occurred during the first attempt
when Odin completed a couple of laps, then came to a stop when making the left
turn off the main loop. Odin unfortunately remained stopped and did not proceed
through large gaps in the traffic. The judges let the team reposition Odin, and Odin
was able to continue completing laps without getting stuck again. After examining
logs, it was found that the retro-reflective lane markings were appearing as
obstacles to the IBEO LIDAR. These sections were about the same length as a
typical car and were classified as a stopped dynamic obstacle. The false objects
would intermittently appear, only causing Odin to be stuck once. The software
already had safeguards against waiting for stationary vehicles, but these were
ineffective due to the object flickering in and out, resetting timers used to track
stationary vheicles. To ensure this would not occur in the final race, the planning
software was made more robust against flickering objects. These changes
prevented Odin from being stuck on multiple occasions on the second NQE course
A run, but did cause unnecessary delay when making a left turn. This problem was
mainly a result of only depending on a single sensor modality, LIDAR, for
obstacle detection and classification. Additional sensing methods, such as vision
or radar, could help reduce the number of these false positives by providing
unique information about surrounding objects detected through LIDAR.

4.2 NQE B – Navigation and Parking

NQE course B was used to test road and zone navigation, parking, and obstacle
avoidance. The vehicles were given missions that took them around the large
course, through parking areas, and down streets with parked cars and other
blockages. Odin accepted the challenge at top speed and set himself up to
complete with a competitive time. However, during the first run, Odin had minor
parking confusion and got stuck in the gauntlet area resulting in insufficient time
to complete the mission. Odin experienced a significant GPS pop on the second
run of NQE course B that causing the vehicle to jump a curb. After restarting back
on the road, Odin finished the course without any problems.

150 C. Reinholtz et al.

During the first run of NQE B, Odin approached the desired space in the row of
parking spots, shown in Figure 16, and stopped for a moment. Instead of pulling
into the spot, Odin reversed, drove forward in a loop around the entire row of cars,
and then pulled right into the spot at a crooked angle. This surprising maneuver
was caused by an incorrect assumption regarding the amount of space that would
be available in front of the vehicle after a parking maneuver. Motion Planning
could not find a clear path due to the car parked in front of the spot. After Odin
tried to reposition itself without any progress, another behavior took control that
tries to navigate around obstructions, causing Odin to circle the lot. When Odin
returned to the parking spot, the software was able to find a parking solution with
a clear path by parking at an angle. The parking software was improved between
runs to more accurately check for a clear path that did not extend past the parking
space. It is interesting to note that with a lower level software failure, Odin was
still able to park, but with reduced performance.

Fig. 16. During NQE B, Odin did not pull into the parking spot by the direct path (solid
line). Instead, Odin pulled to the left (dashed line), circling the parked cars and eventually
entered the space.

During the first run of NQE course B, Odin became stuck in the area known as
the ‘Gauntlet’, characterized by vehicles parked along both sides of the road. This
length of road was further complicated with cones and traffic barrels marking
construction hazards along the centerline of the road. A simulator screenshot of
what was seen in the Gauntlet is shown in Figure 17a. Odin tried to change lanes
to pass the disabled vehicle, but was unable to execute this command because the
blind spot was reported as not clear. Reviewing the logged data also revealed that
Odin had difficulty traveling where both lanes of travel were significantly
blocked. As seen in Figure 17a, both lanes are mostly blocked, but there is a large
space in between the lanes. To solve the first problem, the lane change driver was
changed to be less cautious about obstacles in a blind spot when lanes had
opposite traffic directions. To allow Odin to use the entire road more effectively,
motion planning would still have a strong desire to stay in the commanded lane
during a lane change, but was changed to not be constrained to remain entirely in
the commanded lane.

Odin: Team VictorTango’s Entry in the DARPA Urban Challenge 151

(a) (b)

Fig. 17. Gauntlet scenario from NQE area B seen in (a) simulation replay and (b) logged
video

Odin experienced localization failures on the second attempt at NQE course B.
As Odin exited the traffic circle onto Sabre St, the position solution provided by
the Novatel system suddenly jumped almost 10 meters to the southeast. Since the
road estimate was derived completely from GPS, this new vehicle position caused
Odin to think it had left the lane. Motion Planning attempted to move Odin back
into the desired lane of travel, but could not due to a virtual boundary placed
around the lane. As a result, Odin drove to the end of Sabre Rd, thinking that it
was driving off of the road. At the end of Sabre Rd, Odin reached a virtual
boundary caused by the intersection of two segments. Having nowhere else to go,
Odin turned right and drove onto the dirt on the side of the road and was paused.
Within milliseconds of the pause, the localization solution reported by the Novatel
system corrected itself. Such a large jump in position was never encountered in
testing, and was not repeated in any NQE course or the final event.

4.3 NQE C – Intersections and Road Blocks

The final NQE course was used to test intersection precedence and dynamic
replanning due to road blocks. Odin performed perfectly at all intersections
yielding to those who had right-of-way and taking the appropriate turn, shown in
Figure 18a. Replanning due to a road blockage was also a success. An interesting
challenge presented in NQE C was a road blockage that was repeatedly
approached by the vehicles during a mission. When Odin detected a blockage
requiring a route replan, the Route Planner would add the blockage and a pair of
u-turn connections to the waypoint on both sides of the blockage to its internal
road map. Allowing a U-turn on the opposite side of a blockage provided an
adequate solution for NQE C; however, it can introduce a problem in a dynamic
environment where a blockage may not be permanent, allowing a vehicle to plan a
U-turn in the middle of a clear road.

Odin did have trouble detecting the stop sign blockage shown in Figure 18b.
The perception module had never been presented with an obstacle that was not
attached to the ground within the road area. The laser rangefinder sensor suite on

152 C. Reinholtz et al.

(a) (b)

Fig. 18. NQE course C contained (a) stop sign intersections and (b) road blockages

Odin had a narrow vertical field of view which caused difficulty perceiving this
blockage. The IBEO sensors were barely able to detect the bottom of the stop
signs attached to the gate while the vehicle was in motion. Once the signs were
detected and the vehicle brakes were applied, the downward pitch of the vehicle
caused the IBEOs to lose sight of the gate. The vehicle was then commanded to
accelerate back up to speed, at which point the gate was seen again and the cycle
repeated. The resulting behavior was that Odin crept forward towards the gate
until the signs were detected by the close-range downward looking SICK
rangefinders. At times the SICKs were barely detecting the stop signs, resulting in
the processed stop sign object flickering in and out of existence. Because of this, it
took the behavior module a significant amount of time to initiate a re-plan around
the blockage. To resolve this issue the behavior software was modified to re-plan
not only after constantly seeing a blockage for a constant period of time, but also
after a blockage is seen in an area for a cumulative period of time.

4.4 Practice and Preparation

This section explains the VictorTango practice and preparation routine during the
Urban Challenge events that helped make Odin successful.

4.4.1 Practice Areas
Team VictorTango always tried to maximize use of each practice timeslot. The
team developed a number of RNDFs that replicated sections of the NQE RNDF
for each of the practice areas. A detailed test plan was created for each practice. If
problems arose, the goal was not to debug software, but to gather as much test
data as possible for further analysis. This proved to be an extremely effective way
to test given the short amount of time allowed for each practice block.

During the practice sessions a fair amount of dust collected on the lenses of the
IBEO laser rangefinders. Although the team was allowed to clean sensors between
missions, Odin’s performance could have suffered until the vehicle returned due to
this layer of dust. The IBEO sensors are capable of reading up to four returns per
laser pulse in order to handle cases where small particles such as dust or
precipitation cause the light reflection. After looking at the scan profiles for the

Odin: Team VictorTango’s Entry in the DARPA Urban Challenge 153

sensors while covered in dust, it was confirmed that a majority of the primary scan
returns were contacting the dust resting on the lens. Even with the primary returns
blocked, the sensors were still able to perceive all objects due to the multi-return
feature. While running with dust on the lens is not ideal, Odin is able to continue
without any reduction in perception capability until the lens can be cleaned.

4.4.2 Simulation
Simulation was a tool heavily used by team VictorTango during NQE and UCE
preparation (the role of simulation in the entire software development process is
discussed in section 6.2.2). In preparation for NQE and UCE, team VictorTango
used an interactive simulator to load NQE & UCE RNDFs and dynamically add
traffic vehicles or static obstacles. The team validated that Odin would be able to
drive all areas of the RNDF before ever running Odin on the course and possibly
wasting NQE run. For example, the planning software had trouble with the short
road segments (less than 2 meters long) connecting the parking zones to the
surrounding road segment. Software modifications to handle this previously
untested RNDF style were validated in simulation.

If a failure occurred during an NQE run, a simulation scene could be created to
match the environment in which the failure occurred. As software developers
fixed problems, the test team had the manpower to run simulations in 5 parallel
groups on laptop computers. This gave the software developers the luxury of
concentrating on remaining software bugs while the test team exhaustively
checked new software in a full range of tests ensuring there were no unintended
side effects.

5 Urban Challenge Event

The most obvious accomplishment of the VictorTango team is that Odin finished
the Urban Challenge competitively. This section highlights the successes and
analyzes the incidents of Odin’s performance in the Urban Challenge race.

5.1 Performance Overview

First out of the gate, Odin left the start zone and drove away at top speed to
complete his first mission. Not knowing what to expect, the team eagerly looked
on with people stationed at each of the viewing locations of the UCE course. Odin
performed superbly, finishing in third place with no accidents or major errors.
Odin’s chase vehicle driver informed the team that Odin was a predictable and
safe driver throughout the challenge. As the team watched the in car video, they
saw that Odin navigated the roads and zones smoothly, made smart choices at
intersections, and obeyed the rules of the road. The UCE did not demand as much
obstacle avoidance and intersection navigation as the NQE. However, the
endurance element and unpredictable nature of robot-on-robot interactions made it
just as challenging.

154 C. Reinholtz et al.

5.2 Perception

This section presents the perception issues Odin faced during the Urban
Challenge. Perception is defined to include all aspects of the design necessary to
sense the environment and transform the raw data into information useful to the
decision making software.

5.2.1 Localization Pops
During the UCE, Odin experienced a localization failure much like the one
encountered during the NQE area B second attempt. Unlike the localization error
during NQE, the position this time jumped to the north, causing Odin to
compensate by driving onto the curb to the south. Fortunately, the position jump
was not as severe. After a brief pause the localization solution returned to the
correct position and Odin returned to the road and continued through the course.

Just as in the NQE, the data needed to diagnose the true cause of this error was
not being logged. Although code changes could have been made to add this data to
the localization logs, the team decided that this was an unnecessary code change
and that there was not sufficient time to test for unexpected errors before the final
competition.

5.2.2 IBEO Reset
A known problem with the IBEO sensors was that occasionally the internal ECU
factory software would freeze, resulting in no scan or object data being
transmitted to the classification software module. No specific cause could be
identified for this problem; however it often occurred after the ECU software had
been running for over four hours. To remedy this situation, a health monitoring
routine had been built into the sensor interface code. When the interface fails to
receive sensor data for a full second, it can stop Odin by reporting an error to the
Health Monitoring module. If the connection is not restored within five seconds
the power is cycled to the IBEO ECUs to reset the software. This reset takes
approximately 90 seconds, and the vehicle will remain in a paused software state
until sensor data is restored. During the 3rd mission of the UCE, this ECU software
freeze occurred as Odin approached one of the four-way intersections. The
software correctly identified this failure and cycled power to the sensors. After the
reset time elapsed, Odin was able successfully proceed through the course without
any human intervention.

5.2.3 Phantom Object
Early in the race, Odin travelled down the dirt road on the south east section of the
RNDF. Without incident, Odin traversed the road up until the road began bending
left before entering Phantom East. Odin slowed to a stop prior to making this last
turn and waited for close to a minute. The forward spacing enforcer was keeping
Odin from going further because Object Detection was reporting a dynamic
obstacle ahead in the lane. Due to the method in which dynamic obstacles are
calculated, the berm to Odin’s left had a shape and height that appeared to be a
vehicle. Had sparse lane detection been enabled for the race, Odin would have
corrected the actual location of the road and Object Classification’s road filter

Odin: Team VictorTango’s Entry in the DARPA Urban Challenge 155

would have surely eliminated the berm as a possible vehicle. However, since this
was not in place, Odin was doomed to wait indefinitely. The vehicle was never
classified as disabled, because the RNDF prohibited passing in a one-way road.
Otherwise, Motion Planning would have easily navigated Odin beyond the
phantom object. Fortunately, due to a small amount of GPS drift to the south the
forward spacing enforcer allowed Odin to pass due to an acceptable clearance
between Odin, the berm to the right, and the phantom object still in view. The
conditions that allowed Odin to pass were similar to conditions experienced in the
gauntlet with cars parked on the side of the road. In the end, had localization data
been more accurate, Odin may have waited forever.

5.2.4 Road Detection
The cubic spline interpolation of the RNDF provided Odin with smooth paths to
drive that followed the curvature of the roads exceptionally well. Driving directly
to waypoints was not sufficient for navigating the Victorville RNDFs. There were
only two instances during the Urban Challenge events where Odin drove over the
curbs due to splining issues rather than localization errors. One example is in lane
8.1 which was the entry lane to the parking zones in the UCE RNDF. Figure 19
displays the Report Lane Position output (overlaid on upper lane). Based on the
image, the spline follows the roads. However, the curb in the right turn of this s-
curve was clipped every time Odin drove down this lane. This issue was due to
tight geometry of the lane, the curvature control limitations of the chosen
implementation of cubic splines, and human error in checking the RNDF
preprocessing.

Fig. 19. Report Lane Position overlay for lane 8.1 of the UCE RNDF where Odin clipped
a curb

5.3 Driving Behaviors

During the UCE, Driving Behaviors performed well, with no major issues. Below
are detailed some of the interesting situations Odin encountered in the UCE.

5.3.1 Intersections
Odin handled intersections well in the UCE, according to logs, team observation,
and the driver of Odin’s chase vehicle. During several merge scenarios, Odin
encountered traffic cars or other robots; however in less than 5% of 4-way stop
scenarios did Odin have to respect precedence for cars arriving before him. It is

156 C. Reinholtz et al.

interesting to note that on several occasions, Odin observed traffic vehicles and
chase cars roll through stop signs without ever stopping. On one occasion, after
properly yielding precedence to Little Ben from U-Penn, Odin safely yielded to
Little Ben’s chase car, which proceeded out of turn at a stop sign despite arriving
at the intersection after Odin.

5.3.2 Passing and Blocked Roads
At no time during the UCE did Odin encounter a disabled vehicle outside of a
safety area or blocked road requiring a replan.

5.3.3 Parking Lot Navigation
Odin performed extremely well in the zone navigation/parking portions of the
UCE; however the missions were very easy in comparison to pre-challenge testing
performed by the team. While each of the three UCE missions contained only one
parking spot (and the same one each time), Odin was prepared for much more
complicated parking lot navigation. The team had anticipated missions with
multiple consecutive parking checkpoints in the same zone but in different rows,
requiring intelligent navigation from spot to spot, travelling down the accepted
patterns (parking rows). A special strategy was even implemented to navigate
parking lots with diagonally oriented spots, travelling down the rows in the correct
direction.

While Odin was over-prepared for more complex parking lots, dynamic
obstacle avoidance in zones was weak however, having seen far less testing. For
this reason, the Route Planner gave zones a higher time penalty.

5.4 Motion Planning

One of Odin’s key strengths in performance was smooth motion planning that
maintained the maximum speed of a segment or a set global maximum of 10 m/s.
The motion planning used on Odin was flexible enough to be used for all
situations of the challenge such as road driving, parking and obstacle avoidance.
By handing the problem of motion planning in a general sense, goals and
weightings could be adjusted for new situations, but the core motion planning
would ensure that no obstacles would be hit.

Reviewing race logs, there was one situation where more robust motion
planning would have been required during the UCE. This occurred when Odin
was traveling east on Montana and was cut-off by Stanford’s Junior taking a left
off of Virginia. Since Odin had the right-of-way, the motion planning algorithm
would not slow down until Junior had mostly entered and been classified in
Odin’s lane. This situation was tested prior to competition, and Odin would have
likely stopped without hitting Junior, but it would have been an abrupt braking
maneuver. However, before the speed limiter of Motion Planning engaged, the
safety driver paused Odin to prevent what was perceived as an imminent collision.
More reliable classification of vehicle orientation and speed would allow motion
planning to consider a wider range of traffic obstacles and apply brakes earlier in a
similar situation.

Odin: Team VictorTango’s Entry in the DARPA Urban Challenge 157

6 Overall Successes

All of the teams in the Urban Challenge produced amazing results considering the
scope of the project and short timeline. This section provides examples of the
characteristics and tools of team VictorTango that increased productivity to
accomplish the required tasks to successfully complete the Urban Challenge.

6.1 Base Vehicle Design

The Ford Escape hybrid platform used for Odin proved to be an excellent
selection. The vehicle was large enough to accommodate all of the required
equipment, but was not so large that tight courses posed maneuvering difficulties.
The seamless integration of the drive-by-wire system proved highly reliable and
was capable of responding quickly to motion planning commands. The power
available from the hybrid system enabled the vehicle to easily power all systems
and to run for more than 18 hours continuously. Good design combined with
attention to detail in execution produced an autonomous vehicle that offered great
performance and suffered very few hardware failures, enabling the team to focus
testing time on software development.

6.2 Software Development

This section provides the features and tools used by the team for rapid software
development, testing and debugging, and error handling. These attributes helped
Odin emerge as a successful competitor in the Urban Challenge.

6.2.1 Software Architecture
During the initial planning and design phases of the project, team VictorTango
spent a significant amount of time breaking down the Urban Challenge problem
into specific areas. The resulting subset of problems then became the guiding
force in the overall software architecture design. This yielded an extremely
modular architecture and also ensured that a clear approach to all the main
problems was addressed early on. Evidence of this foresight is the fact that the
software architecture is almost exactly the same as it was originally conceived in
early January of 2007. Slight modifications were made to some of the messages
between software components, but in general, the original approach proved to be
very successful.

Another benefit to the modular architecture was that it suited team
VictorTango’s structure very well. The size and scope of each software
component could be developed by one or two principal software developers.
Along with open communication channels and strong documentation, the team
was able to tackle all of the Urban Challenge sub-problems in a methodical,
efficient manner. Furthermore, by avoiding any sort of large, global solver, or all-
encompassing artificial intelligence, team VictorTango’s approach provided more
flexibilty. The team was not pigeon-holed into any one approach and could find
the best solution for a variety of problems. Finally, the modular architecture

158 C. Reinholtz et al.

prevented setbacks and unforeseen challenges from having debilitating effects as
they might with less diverse systems.

Finally, the decision to implement the Joint Architecture for Unmanned
Systems (JAUS) for inter-process communications in Odin offered several key
advantages. Primarily, JAUS provided a structure for laying out software modules
in a peer-to-peer, modular, automatically reconfigurable, and reusable fashion. It
provided a framework for inter-process communication inside and across
computing nodes, and a set of messages and rules for dynamic configuration,
message routing, and data serving. Finally, the implementation of JAUS ensured
that software developed under the Urban Challenge is reusable in future robotics
projects, a critical step in accelerating the progress of unmanned systems.

6.2.2 Simulation
A key element of the software development was a custom developed simulation
environment, shown in Figure 20 presenting Odin with a simulated road blockage.
The simulator was used in all phases of software development, including: initial
development, software validation, hardware-in-the-loop simulation, and even as a
data visualization tool during vehicle runs. An easy to use simulator allowed
software developers to obtain instant feedback on any software changes made as
well as allowing other members of the team to stress test new software before
deploying it to the vehicle.

Testing also involved more stringent validation milestones. Typically the first
milestone for a new behavior involved a software validation. Software validations
consisted of running software components on the final computer hardware with all
perception messages being supplied by the simulator and all motion commands
being sent to the simulator. These validations were run by the test team which
would provide a set of different scenarios saved as separate scene files. After a
successful software validation, some behaviors required hardware-in-the-loop
simulation. In these simulations, the software was running on Odin in a test course
and the software was configured to send motion commands to Odin as well as the
simulator. The simulator would produce obstacle messages, allowing Odin to be
tested against virtual obstacles and traffic eliminating any chance of a real
collision during early testing. Lastly, in final validation, the simulator was used as
a visualization tool during real-world testing.

6.2.3 Data Log Replay
Instrumental in diagnosing and addressing failures was a data logging and replay
system integrated at the communications level. Called Déjà Vu, the system
amounted to logging all input JAUS messages between modules for later playback
in near real-time. During diagnostics, the component under analysis operated just
as it did on the vehicle, only with the messages replayed from the Déjà Vu files.
Additional features allowed logged data and Odin’s position to be visualized in the
simulator’s 3D view as well.

Déjà Vu was critical in solving the problems encountered during NQE. In a
typical scenario, the logged messages were played into the software as it ran in

Odin: Team VictorTango’s Entry in the DARPA Urban Challenge 159

Fig. 20. Screenshot of simulated Odin encountering a roadblock

source code form, allowing diagnostic breakpoints and probes to be used during
playback. Once the problem had been diagnosed and a solution implemented, the
new software was verified against the same logged data to verify the software
made the intended decision.

Finally, by integrating Déjà Vu logging directly into the TORC JAUS Toolkit,
it remained independent of the primary software module’s functionality. As such,
Déjà Vu is immediately reusable tool for future use in other projects.

7 Conclusions

Team VictorTango successfully completed the DARPA Urban Challenge final
event, finishing 3rd, shown in Figure 21. During the competition, Odin was able to
drive several hours without human intervention, negotiating stop sign intersections,
merging into and across traffic, parking, and maintaining road speeds. Heightening
the challenge was a very aggressive development timeline and a loosely defined
problem allowing for many unknown situations. These factors made development
efficiency as well as testing key components for success.

The aspect of the challenge that gave team VictorTango the most difficulty was
environmental sensing. Unreliable sensing at longer distances was a major factor
in limiting the vehicle maximum speed to 10 m/s. This speed limit and especially
delays due to falsely perceived obstacles added significant time during the final
event. The vertical field of view of sensors on the market today is a major limiting
factor, especially in laser rangefinders. New technology such as the IBEO Alasca
XT sensors and the Velodyne laser rangefinder are beginning to address these
issues, but are relatively new products that are still undergoing significant design
modifications. The use of prototype products in a timeline as short as the Urban
Challenge introduces risk, as functions may be unreliable or settings may change.

160 C. Reinholtz et al.

Fig. 21. Odin crosses the finish line.

When evaluating the performance and design of vehicles participating in the
DARPA Urban Challenge, it is important to consider the short development
timeline of 18 months. Due to funding and organization, team VictorTango had
closer to 14 months of actual development time. For example, road detection
algorithms using vision were developed, and good results were achieved in certain
conditions, but the team felt the software was not mature enough to handle all the
possible cases within the scope of the urban challenge rules. A LIDAR road
detection algorithm gave more consistent results over a wider variety of terrain,
but had limited range requiring a reduction in travel speed. These results are more
of a product of the development time and number of team members available to
work on road sensing, rather than the limitations of the technology itself. With the
short timeline, the team chose to use roads defined entirely defined by GPS,
causing failures on at least 3 occasions during the race and NQE.

The Urban Challenge event demonstrated to the world that robot vehicles could
interact with other robots and even humans in a complex environment. Team
VictorTango has already received feedback from industry as well as military
groups wanting to apply the technology developed in the Urban Challenge to their
fields immediately.

Acknowledgements

This work was supported and made possible by DARPA track A funding and by
the generous support of Caterpillar, Inc and Ford Motor Co. We would also like to
thank National Instruments, NovaAtel, Omnistar, Black Box Corporation, Tripp
Lite, Ibeo, Kairos Autonomi and Ultramotion for sponsorship or other support.

Odin: Team VictorTango’s Entry in the DARPA Urban Challenge 161

References

Avila-Garcıa, O., Hafner, E., Canamero, L.: Relating Behavior Selection Architectures to
Environmental Complexity. In: Proc. Seventh Intl. Conf. on Simulation of Adaptive
Behavior, MIT Press, Cambridge (2002)

Cacciola, S.J.: Fusion of Laser Range-Finding and Computer Vision Data for Traffic
Detection by Autonomous Vehicles. Master’s Thesis. Virginia Tech., Blacksburg, VA
(2007)

Currier, P.N.: Development of an Automotive Ground Vehicle Platform for Autonomous
Urban Operations. Master’s Thesis. Virginia Tech, Blacksburg, VA (2008)

Duda, R.O., Hart, P.E.: Use of the Hough Transform to Detect Lines and Curves in
Pictures. Commun. ACM 15(1), 11–15 (1972)

Eren, H., Fung, C.C., Evans, J.: Implementation of the Spline Method for Mobile Robot
Path Control. In: Piuri, V., Savino, M. (eds.) Proceedings of the 16th IEEE
Instrumentation and Measurement Technology Conference, vol. 2, pp. 739–744. IEEE,
Venice (1999)

Fuerstenberg, K.C., Dietmayer, K.C.J., Lages, U.: Laserscanner Innovations for Detection
of Obstacles and Road. In: Proceedings of 7th International Conference on Advanced
Microsystems for Automotive Applications, Berlin, Germany (2003)

Fuerstenberg, K.C., Linzmeier, D.T., Dietmayer, K.C.J.: Pedestrian Recognition and
Tracking of Vehicles using a Vehicle Based Multilater Laserscanner. In: Proceedings of
10th World Congress on Intelligent Transport Systems, Madrid, Spain (2003)

Hart, P.E., Nilsson, N.J., Raphael, B.: A Formal Basis for the Heuristic Determination of
Minimum Cost Paths. IEEE Transactions on Systems Science and Cybernetics SSC
4(2), 100–107 (1968)

Hurdus, J.G.: A Portable Approach to High-Level Behavioral Programming for Complex
Autonomous Robot Applications. Master’s Thesis. Virginia Tech, Blacksburg, VA
(2008)

Kelly, A.J.: A 3D State Space Formulation of a Navigation Kalman Filter for Autonomous
Vehicles. CMU Robotics Institute Technical Report CMU-RI-TR-94-19 (1994)

Konolige, K., Myers, K.: The Saphira Architecture for Autonomous Mobile Robots. In:
Kortenkamp, D., Bonasson, R., Murphy, R. (eds.) Artificial Intelligence and Mobile
Robots. MIT Press, Cambridge (1998)

Lacaze, A., Moscovitz, Y., DeClaris, N., Murphy, K. (1998). Path Planning for
Autonomous Vehicles Driving Over Rough Terrain. In: Proceedings of the
ISIC/CIRA/ISAS Conference. Gaithersburg, MD, September 14-17 (1998)

Maes, P.: How To Do the Right Thing.Technical Report NE 43–836, AI Laboratory. MIT,
Cambridge (1989)

Milliken, W.F., Milliken, D.L.: Race Car Vehicle Dynamics. SAE International,
Warrendale, PA (1995)

Murphy, R.R.: Introduction to AI Robotics. MIT Press, Cambridge (2000)
Pirjanian, P.: Multiple Objective Behavior-Based Control. Robotics and Autonomous

Systems 31(1), 53–60 (2000)
Pirjanian, P.: Behavior Coordination Mechanisms – State-of-the-Art. Tech Report IRIS-99-

375, Institute for Robotics and Intelligent Systems, University of Southern California,
Los Angeles, California (1999)

162 C. Reinholtz et al.

Rosenblatt, J.: DAMN: A Distributed Architecture for Mobile Navigation. In: AAAI Spring
Symposium on Lessons Learned from Implemented Software Architectures for Physical
Agents, Stanford, CA. AAAI Press, Menlo Park (1995)

Russel, S., Norvig, P.: Artificial Intelligence – A Modern Approach. Pearson Education,
Inc., Upper Saddle River (2003)

Thrun, S., Montemerlo, M., et al.: Stanley: The robot that won the DARPA Grand
Challenge: Research Articles. Journal of Field Robotics 23(9), 661–692 (2006)

Urmson, C., et al.: A Robust Approach to High-Speed Navigation for Unrehearsed Desert
Terrain. Journal of Field Robotics 23(8), 467 (2006)

	Odin: Team VictorTango’s Entry in the DARPA Urban Challenge
	Introduction
	VictorTango Overview
	Base Vehicle Platform
	Perception
	Planning

	Technical Approach
	System Architecture and Communications
	Perception
	Planning

	Final Software Configuration
	Motion Planning Parameters
	Sparse Road Detection
	Vision Drivable Area Coverage

	National Qualifying Event
	NQE A – Traffic
	NQE B – Navigation and Parking
	NQE C – Intersections and Road Blocks
	Practice and Preparation

	Urban Challenge Event
	Performance Overview
	Perception
	Driving Behaviors
	Motion Planning

	Overall Successes
	Base Vehicle Design
	Software Development

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

