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ABSTRACT 
This work presents a novel nonlinear programming based motion 

planning framework that treats uncertain under-actuated dynamical 

systems described by ordinary differential equations. Uncertainty in 

multibody dynamical systems comes from various sources, such as: 

system parameters, initial conditions, sensor and actuator noise, and 

external forcing. Treatment of uncertainty in design is of paramount 

practical importance because all real-life systems are affected by it, 

and poor robustness and suboptimal performance result if it’s not 

accounted for in a given design. System uncertainties are modeled 

using Generalized Polynomial Chaos and are solved quantitatively 

using a least-square collocation method. The computational 

efficiencies of this approach enable the inclusion of uncertainty 

statistics in the nonlinear programming optimization process. As such, 

new design questions related to uncertain dynamical systems can now 

be answered through the new framework.  

Specifically, this work presents the new framework through a 

hybrid dynamics formulation for under-actuated systems where 

actuated state and unactuated input trajectories are prescribed and 

uncertain unactuated states and actuated inputs are quantified. The 

benefits of the ability to quantify the resulting uncertainties are 

illustrated in a power optimal motion planning case-study for an 

inverting double pendulum problem. The resulting design determines a 

motion plan that minimizes the required input power—subject to 

actuator and terminal condition variance constraints—for all possible 

systems within the probability space.   

1 INTRODUCTION 
Design engineers cannot quantify exactly every aspect of a given 

system. These uncertainties frequently create difficulties in 

accomplishing design goals and can lead to poor robustness and 

suboptimal performance. Tools that facilitate the analysis and 

characterization of the effects of uncertainties enable designers to 

develop more robustly performing systems. The need to analyze the 

effects of uncertainty is particularly acute when designing dynamical 

systems. Frequently, engineers do not account for various uncertainties 

in their design in order to save time and to reduce costs. However, this 

simply delays, or hides, the cost which is inevitably incurred down-

stream in the design flow; or worse, after the system has been 

deployed and fails to meet the design goals. Ultimately, if a robust 

system design is to be achieved, uncertainties must be accounted for 

up-front during the design process.  

This work presents a novel nonlinear programming (NLP) based 

motion planning framework that treats uncertain fully-actuated 

dynamical systems described by ordinary differential equations 

(ODEs). System uncertainties are modeled using Generalized 

Polynomial Chaos (gPC) and are solved quantitatively using a least-

square collocation method (LSCM). The computational efficiencies 

gained by gPC and LSCM enable the inclusion of uncertainty statistics 

in the NLP optimization process.  

Specifically, this work presents the new framework through a 

hybrid dynamics formulation for under-actuated systems where 

actuated state and unactuated input trajectories are prescribed and 

uncertain unactuated states and actuated inputs are quantified. The 

benefits of the ability to quantify the resulting uncertainties are 

illustrated in a power optimal motion planning case-study for an 

inverting double pendulum problem. The resulting design determines a 

motion plan that minimizes the required input power—subject to 

actuator and terminal condition variance constraints—for all possible 

systems within the probability space.   
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The companion formulations for fully-actuated systems based on 

uncertain inverse and forward dynamics are presented by the authors 

in [1, 2].  

It’s important to point out that the new framework is not 

dependent on the specific formulation of the equations of motion 

(EOMs); formulations such as, Newtonian, Lagrangian, Hamiltonian, 

and Geometric methodologies are all applicable. This work applies the 

analytical Lagrangian EOM formulation which is briefly introduced in 

Section 2; Section 3 briefly discusses the well studied deterministic 

motion planning problem with particular attention to the hybrid 

dynamics approach for under-actuated systems; Section 4 reviews the 

Generalized Polynomial Chaos methodology for uncertainty 

quantification when using hybrid dynamics; Section 5 introduces the 

new framework for motion planning of uncertain under-actuated 

dynamical systems based on the new uncertain hybrid dynamics 

formulation; finally, Section 6  illustrates the strengths of the new 

framework through a case-study of an inverting double pendulum 

followed by concluding remarks in Section 7. 

2 UNDER-ACTUATED MULTIBODY DYNAMICS 
As a very brief overview, the Euler-Lagrange ODE formulation 

for a multibody dynamical system can be described by [3, 4],   ������, ����	
� ��� + 
�����, 
���, ����	
���+ ������, 
���, ����	 = ������, 
���, 
� ���, ����	 = ���� 

(1) 

where ���� ∈ ℝ��  are independent generalized coordinates equal in 

number to the number of degrees of freedom, ��; 
��� ∈ ℝ�� the 

generalized velocities and—using Newton’s dot notation—
� ��� 

contains their time derivatives; ���� ∈ ℝ��  includes system 

parameters of interest; ������, ����	 ∈ ℝ��×�� is the square inertia 

matrix; 
�����, 
���, ����	 ∈ ℝ��×��  includes centrifugal, 

gyroscopic and Coriolis effects; ������, 
���, ����	 ∈ ℝ��  represents 

the generalized gravitational and joint forces; and ���� ∈ ℝ��  are the �� applied inputs. (For notational brevity, all future equations will drop 

the explicit time dependence.) 

The relationship between the time derivatives of the independent 

generalized coordinates and the generalized velocities is, �� = ���, ��
 (2) 

where ���, �� is a skew-symmetric matrix that is a function of the 

selected kinematic representation (e.g., Euler Angles, Tait-Bryan 

angles, Axis-Angle, Euler Parameters, etc.) [5, 6]. However, if (1) is 

formulated with independent generalized coordinates and the system 

has a fixed base, as in [1, 2], then (2) becomes �� = 
.   

The trajectory of the system is determined by solving (1)–(2) as an 

initial value problem, where ��0� = �� and
 


�0� = 
�. Also, the 

system measured outputs are defined by,  = !��, �� , �� (3) 

where  ∈ ℝ�" with �# equal to the number of outputs.  

This work specifically treats under-actuated systems. An under-

actuated system has at least one unactuated degree of freedom, or, �� < ��, where each actuated degree of freedom has one and only one 

associated actuator.  

3 DETERMINISTIC MOTION PLANNING OF UNDER-
ACTUATED SYSTEMS 
The task of dynamic system motion planning is a well studied 

topic; it aims to determine a state, or input, trajectory to realize some 

prescribed objective. Sampled-based motion planning formulations, 

such as Rapid-exploring Random Trees (RRTs), primarily focus on 

finding a feasible solution [7-9]; where nonlinear programming 

formulations seek to determine at least a local optimal solution [10-

27].  

The under-actuated motion planning problem may be solved with 

a forward dynamics formulation, however, it is less efficient than the 

hybrid dynamics formulation presented here. Use of a hybrid dynamics 

formulation exploits the benefits of an inverse dynamics formulation 

for all actuated joints, �% , and relies on forward dynamics to solve the 

unactuated joints, �& . If state trajectories for actuated joints, ' �% , ��% , �(% ), are provided, then the inverse dynamics methodology 

can solve for the corresponding actuated inputs, or wrenches, �% , 

through a direct function evaluation. Likewise, if input wrench 

trajectories for the unactuated joints, �& , are provided then the 

forward dynamics methodology can solve for the corresponding 

unactuated positions and velocities by integrating 
�& . This mixed 

methodology is frequently referred to as hybrid dynamics [12, 28]. 

Table 1 helps clarify the relations between known and unknown 

quantities, 

Table 1—Hybrid Dynamics Knowns vs Unknowns 

Joint Type Known Unknown 

Actuated �% , ��% , �(% , 
% , 
�%   �%  

Unactuated �&  �& , ��& , �( , 
& , 
�&&  

where � = ' �% , �& ) and � = ' �% , �)& . 

From a motion planning perspective, and following a similar 

approach as introduced by Sohl [15], �& �*� and �% �*�  are 

parameterized with B-Splines to reduce the problem to a finite 

dimensional search, by, 

�% �*�, �& �*� = + ,�,-./���0��1�
�2�  (4) 

where 0 ∈ ℝ�� are �34 control points; , and - are the B-Splines’ 

basis functions and degree, respectively; * ∈ ℝ�1�×�� is an vector of 

control points, 0.  The parameterized rates and accelerations, ��% �*� 
and �(% �*� are determined through direct derivation of �% �*� 
resulting in lower order B-Splines [29]. Also,  
% �*� and 
�% �*� may 

be determined by differentiating (2) twice, yielding, 

�( �*� = ����*�, ��
� �*� + 
�*� 56�6� + 6�6� 6�6� + 6�6� 6�6� 7 (5) 

Solving (2) for 
�*� and (5) for 
� �*� yields, 
�*� = �����*, ��, ��	./�� �*� (6) 


� �*� = �����*�, ��	./ 8�( �*�
− 
�*, �� 56�6� + 6�6� 6�6� + 6�6� 6�6� 7: (7) 

Once all known trajectories are parameterized the system of hybrid 

dynamics takes the form, 

; 
�&�% < = =� �% �*�, 
% �*�, 
�% �*�, �& �*�, �� (8) 

It is worth mentioning that the unactuated input wrenches,  �& , represent joint constraint forces. Depending on the formulation 

used to determine the EOMS then �&  may be implicitly known once ' �% �*�, 
% �*�, 
�% �*�) are specified. In such a formulation (8) 

reduces to, 
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; 
�&�% < = =� �% �*�, 
% �*�, 
�% �*�, �� (9) 

Once (8) or (9) is determined then the NLP-based deterministic motion 

planning problem may be formulated as, minB2'*)   J  s. t. Actuated kinematicsActuated kinematicsActuated kinematicsActuated kinematics    
% �*� = N�� �% �*�, ��O.P ��% �*� 
�% �*� = N�� �% �*�, ��O.P ∗                                                 ; �(% �*� − 
% �*� NR�RS + R�R� R�RS + R�R� R�RS O<    
Hybrid dynamicsHybrid dynamicsHybrid dynamicsHybrid dynamics    ; 
�&�% < = =� �% �*�, 
% �*�, 
�% �*�, �& �*�, ��    
Unactuated kinematicsUnactuated kinematicsUnactuated kinematicsUnactuated kinematics    ��& = �& � �& , �� 
&     OutputsOutputsOutputsOutputs     = !���*�, �� �*�, ��    ConstraintsConstraintsConstraintsConstraints    ]� , �, ^� ≤ `    HardHardHardHard    aaaactuated ICs & TCsctuated ICs & TCsctuated ICs & TCsctuated ICs & TCs    �% �0� = *% � = �% � ��% �0� = *% � = ��% � �% ��d	 = *% �1� = �% Se  ��% ��d	 = *% �1�./ = ��% Se  HardHardHardHard    uuuunactuated ICs & TCsnactuated ICs & TCsnactuated ICs & TCsnactuated ICs & TCs    �& �0� = �& � ��& �0� = ��& � �& ��d	 = �& Se ��& ��d	 = ��& Se 

 

(10) 

Equation (10) seeks to find the control points * that minimizes 

some prescribed objective function, J, while being subject to the hybrid 

dynamic constraints defined in (8). Notice how the kinematic 

equations defined in (5)–(7) have been require being split between 

actuated and unactuated variants, where the actuated kinematic 

equations are evaluated before the dynamics (8). After the dynamics 

are evaluated then the unactuated kinematics may be determined. 

Additional constraints may also be defined; for example, 

maximum/minimum actuator and system parameter limits or physical 

system geometric limits can be represented as inequality relations, ]� , �, ^� ≤ `. Equation (10) explicitly differentiates between the 

initial conditions (ICs) and terminal conditions (TCs) for the actuated 

and unactuated states. All actuated ICs and TCs are determined by 

corresponding control points in, *, where all unactuated ICs and TCs 

are freely defined. When ICS and/or TCs are explicitly defined as 

shown in (10) they are referred to as hard constraints; conversely, if 

the constraints are added to the definition of the objective function, J, 
then they are refered to as soft constraints. 

In [1] the authors itemized common motion planning objective 

function definitions from the literature; the power optimal objective 

function, used in the accompanying case study, is repeat for 

convenience ,  

J = +|g�h�i|��
�2/ ,   ∀� (11) 

The solution to (10) produces an optimal motion plan under the 

assumption that all system properties are known (i.e., (1) is completely 

deterministic). The primary contribution of this work is the 

presentation of a variant of (10) that allows (1) to contain uncertainties 

of diverse types (e.g., parameters, initial conditions, sensor/actuator 

noise, or forcing functions). The following section will briefly 

introduce Generalized Polynomial Chaos (gPC) which is used to 

model the uncertainties and to quantify the resulting uncertain system 

states and inputs. 

4 GENERALIZED POLYNOMIAL CHAOS  
Generalized Polynomial Chaos (gPC), first introduced by Wiener 

[30], is an efficient method for analyzing the effects of uncertainties in 

second order random processes [31]. This is accomplished by 

approximating a source of uncertainty, k, with an infinite series of 

weighted orthogonal polynomial bases called Polynomial Chaoses. 

Clearly an infinite series is impractical; therefore, a truncated set of l# + 1 terms is used with l# ∈ ℕ representing the order of the 

approximation.  Or, 

k�o� = + kpqp4"
p2� �o�r�� (12) 

where  kp ∈ ℝ represent known stochastic coefficients; qp ∈ ℝ 

represent individual single dimensional orthogonal basis terms (or 

modes); o�r� ∈ ℝ is the associated random variable for k that maps 

the random event r ∈ Ω, from the sample space, Ω, to the domain of 

the orthogonal polynomial basis (e.g., o: Ω → [−1,1]).  
Polynomial chaoses are orthogonal with respect to the ensemble 

inner product, 〈q��o�, qp�o�〉  =  y q��o�qp�o�z�o�{o/./  =  0,    for i≠j (13) 

where z�o� is the weighting function that is equal to the joint 

probability density function of the random variable o. Also, 〈Ψp , Ψp〉 = 1, ∀| when using normalized basis; standardized basis are 

constant and may be computed off-line for efficiency using (13). 

gPC can be applied to multibody dynamical systems described by 

differential equations [32, 33]. The presence of uncertainty in the 

system results in uncertain states and inputs, in the case of a hybrid 

dynamics formulation. Therefore, the uncertain states/inputs can be 

approximated in a similar fashion as (12), 

}�~ ��o; �� = + }�~ �p���Ψp��
p2� �o�, � = 1 … �~ 3 (14) 

g� ��o; �� = + g� �p���Ψp��
p2� �o�, � = 1 … �� � (15) 

where }�~ �p��� ∈ ℝ�� represent the stochastic coefficients for the �S� 

state; g� �p��� ∈ ℝ�� represent the stochastic coefficients for the �S� 

input; �� ∈ ℕ representing the number of basis terms in the 

approximation. Notice how these stochastic coefficients are unknown 

functions of time. 

The stochastic basis may be multidimensional in the event there 

are multiple sources of uncertainty. The multidimensional basis 

functions are represented by Ψ� ∈ ℝ��. Additionally, � becomes a 

vector of random variables, � = 'o/, … , o��) ∈ ℝ�� and maps the 

sample space, Ω, to an �4 dimensional cuboid,  �: Ω → [−1,1]�� (as in 

the example of Jacobi chaoses). 

The multidimensional basis is constructed from a product of the 

single dimensional basis in the following manner, �p = q/��q��� … q����� ,    �� = 0 … l#, � = 1 … �4 (16) 

where subscripts represent the uncertainty source and superscripts 

represent the associated basis term (or mode). A complete set of basis 
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may be determined from a full tensor product of the single 

dimensional bases. This results in an excessive set of �l# + 1��� basis 

terms. Fortunately, the multidimensional sample space can be spanned 

with a minimal set of �� = ����4"	!��! 4"!  basis terms. The minimal basis set 

can be determined by the products resulting from these index ranges, �/ = 0 … l#,  �� = 0 … �l# − �/�, …,   ��� = 0 … Nl# − �/ − �� − ⋯ − ����./�O 

The number of multidimensional terms, ��, grows quickly with 

the number of uncertain parameters,  �4, and polynomial order, l#. 

Sandu, Sandu, and Ahmadian showed that gPC is most appropriate for 

modeling systems with a relatively low number of uncertainties [32, 

33] but can handle large nonlinear uncertainty magnitudes.  

Substituting (12) and (14)–(15) into (8) produces the following 

uncertain hybrid dynamics (UHD),   

8∑ }�~ �p���Ψp��p2� �o�∑ g� �p���Ψp��p2� �o�:
= = � �% �*�, 
% �*�, 
�% �*�, �& �*�, + kpqp4"

p2� �o�� ,
� = 1 … �~ 3, � = 1 … �� � 

(17) 

where the unknowns are now the �� �~ 3 unactuated uncertain state 

coefficients, }�~ �p, and the �� �� � actuated uncertain input coefficients. 

Revisiting Table 1, all unknown quantities become uncertain in the 

uncertain hybrid dynamics formulation. 

It is instructive to notice how time and randomness are decoupled 

within a single term after the gPC expansion. Only the stochastic 

coefficients are dependent on time, and only the basis terms are 

dependent on the �� random variables, �.  

The Galerkin Projection Method (GPM) is a commonly used 

method for solving (17), however, this is a very intrusive technique 

and requires a custom formulation of the hybrid dynamic EOMs. As an 

alternative, sample-based collocation techniques can be used without 

the need to modify the base EOMs.  

Reference [32] showed that the collocation method solves (17) by 

solving (1)–(3) at a set of points, �� ∈ ℝ�� ,   � = 1 … ��4, selected 

from the �4 dimensional domain of the random variables � ∈ ℝ��. 

Meaning, at any given instance in time, the random variables’ domain 

is sampled and solved ��4 times with � = ��  (updating the 

approximations of all sources of uncertainty for each solve), then the 

uncertain coefficients can be determined at that given time instance. 

This can be accomplished by defining the intermediate variables, 

����~ ��; �� 	 = + }��p����p��
p2� � �� 	,   � = 1 … �~ 3, � = 0 … ��4 (18) 

���� ��; �� 	 = + g�p����p��
p2� � �� 	,   � = 1 … �� � , � = 0 … ��4 (19) 

and substituting them into (17). This yields, 

8 ����~ ��; �� 	���� ��; �� 	: = � N �% , 
% , 
�% , �& , Θ�� ��; �� 	O,  � = 1 … �~ 3 , � = 1 … �� � , � = 1 … �4, � = 0 … ��4 
(20) 

where, 

Θ�� ��; �� 	 = + k�p���4"
p2� qp� �� 	,   � = 0 … ��4 , � = 1 … �4  (21) 

Equation (20) provides a set of ��4 independent equations whose 

solutions determine the uncertain stochastic coefficients, �q�p , }�p }��p , g�p¡. This is accomplished by recalling the relationship of 

the stochastic coefficients to the solutions, ���� , shown in (18)–(19). In 

matrix notation (18)–(19) can be expressed for all states,  ¢� � = �
� ����	£¤���,           � = 1 … �~ 3 (22) £� = ������	£¤���,           � = 1 … �� � (23) 

where the matrix, ¥�,p = �p� ¦� 	,   | = 0 … �� , � = 0 … ��4 (24) 

is defined as the collocation matrix. It’s important to note that �� ≤ ��4. The stochastic coefficients can now be solved for using 

(22)–(23), }��p��� = §#¢� � ,        � = 1 … �~ 3, | = 0 … �� (25) g�p��� = §#£� ,        � = 1 … �� � , | = 0 … �� (26) 

where ¥# is the pseudo inverse of ¥ if �� < ��4. If �� = ��4, then 

(25)–(26) are simply a linear solve. However, [34] presented the least-

squares collocation method (LSCM) where the stochastic state 

coefficients are solved for, in a least squares sense, using (25)–(26) 

when �� < ��4. Reference [34] also showed that as ��4 → ∞ the 

LSCM approaches the GPM solution; where by selecting 3�� ≤��4 ≤ 4�� the greatest convergence benefit is achieved with minimal 

computational cost. LSCM also enjoys the same exponential 

convergence rate as l# → ∞.   

The unintrusive nature of the LSCM sampling approach is 

arguably its greatest benefit; (8) may be repeatedly solved without 

modification. Also, there are a number of methods for selecting the 

collocation points and the interested reader is recommended to consult 

[32, 34-37] for more information.  

5 UNCERTAIN HYBRID DYNAMICS MOTION 
PLANNING 
Little work is found in the literature addressing motion planning 

for uncertain systems. The literature thus far has primarily addressed 

sensor and/or actuator noise [7, 38] and frequently only treats the 

system’s kinematics [39, 40].  

In [41], Kewlani presents an RRT planner for mobility of robotic 

systems based on gPC but refers to it as a stochastic response surface 

method (SRSM). Kewlani’s work is similar in spirit to this work, 

however, the main difference is Kewlani’s solution is developed only 

for determining a feasible motion plan. The motion planning 

framework of this paper is formulated within a NLP setting and thus 

benefits from the more efficient gradient-based searching techniques 

providing at least a locally optimal design.    

As such, the new NLP-based framework for motion planning of 

uncertain under-actuated multibody dynamical systems, formulated 

with uncertain hybrid dynamics, is, 

minB={*}
 J s. t. Actuated kinematicsActuated kinematicsActuated kinematicsActuated kinematics    
% �*� = N�� �% �*�, ��O.P ��% �*� 
�% �*� = N�� �% �*�, ��O.P ∗ 

                ; �(% �*� − 
% �*� NR�RS + R�R� R�RS + R�R� R�RSO< 
Uncertain hyUncertain hyUncertain hyUncertain hybrid dynamicsbrid dynamicsbrid dynamicsbrid dynamics    ; 
�& ��; ���% ��; ��< = =� �% �*�, 
% �*�, 
�% �*�, �& �*�, ���� � 
Uncertain unactuated kinematicsUncertain unactuated kinematicsUncertain unactuated kinematicsUncertain unactuated kinematics    

(27) 
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�� ���& = �& N �& ���, ����O 
& ��� Uncertain outputsUncertain outputsUncertain outputsUncertain outputs     ��� = !���*; ��, �� �*; ��, ����	 Uncertain cUncertain cUncertain cUncertain constraintsonstraintsonstraintsonstraints    ]� ���, ����, ����� ≤ ` HardHardHardHard    actuated ICs & TCsactuated ICs & TCsactuated ICs & TCsactuated ICs & TCs        �% �0� = *% � = �%
0 ��% �0� = *% � = ��%
0 �% ��d	 = *% �1� = �% Se  ��% ��d	 = *% �1�./ = ��% Se HardHardHardHard    uncertain uncertain uncertain uncertain uuuunactuated ICs & TCsnactuated ICs & TCsnactuated ICs & TCsnactuated ICs & TCs    �& �0; �� = �&

0��� ��& �0; �� = ��&
0��� �& ��d; �	 = �& Se��� ��& ��d; �	 = ��& Se��� 

 

where (27) is a reformulation of (10) using the uncertain hybrid 

dynamics defined in (17) with uncertain actuated inputs and 

unactuated states. The most interesting part of (27) comes in the 

definition of the objective function terms and constraints. These terms 

now have the ability to approach the design accounting for 

uncertainties by way of expected values, variances, and standard 

deviations. In the uncertain hybrid dynamics formulation, the actuated 

state and unactuated input profiles are deterministic. Therefore, the 

objective function for time optimal, effort optimal, and jerk optimal (as 

presented in [1]) are deterministically defined. However, a power 

optimal design would necessitate statistical objective functions of the 

form, 

J¬/ = ­ ® +|z�g����y����|��
�2/ ° 

      = ∑ ∑ ±z�τ�py�p〈Ψp , Ψp〉±��p2����2/ , ∀� 

(28) 

where z� are optional scalarization weights; (28) is the expected power 

profile.  

Designs may necessitate statistically penalizing terminal 

conditions (TC) of the state or output trajectories in the objective 

function (occasionally referred to as soft constraints). Two candidates 

are,  J¬� = ³¦´�Se	³ = µ­¶·��d; �	¸µ 

      = µ �´d��d	 −  ���d�〈Ψ�, Ψ�〉µ (29) 

J¬¹ = ³º´�Se	� ³ 

      = »­ ¼N·�t½; �� − ¦´�Se	O�¾» 

      = ³∑ � p�t½�	���p2� 〈Ψp , Ψp〉³   (30) 

where ·�t½; �� =  �´d�t½� −  �t½; ��; (29) is the expected value of the 

TC’s error; (30) is the corresponding variance of the TC’s error. 

Notice that due to the orthogonality of the polynomial basis these 

computations result in a reduced set of efficient operations on the 

respective stochastic coefficients.  

The inequality constraints may also benefit from added statistical 

information; for example, bounding the expected values can be 

expressed as, ]��; �� =  ≤ ­[ ���] ≤   (31) 

where ­[ ���] = ¦ =  �〈Ψp , Ψp〉, and ¿ ,  ÀÁ are the 

minimum/maximum output bounds respectively.  

Collision avoidance constraints would ideally involve supremum 

and infimum bounds, 

 ≤ inf� ��; ��	,   sup� ��; ���  ≤   (32) 

However, one major difficulty with supremum and infimum bounds is 

that they are expensive to calculate. An alternative can be to constrain 

the uncertain configuration in a standard deviation sense; collision 

constraints would then take the form, ¦ + º  ≤  À  ≤ ¦ − º  (33) 

where Ã�{{Ä}[ ���] = º = Å∑ Æ�〈Ψp , Ψp〉��p2/ . 

6 AN INVERTING DOUBLE PENDULUM CASE-
STUDY 
As an illustration of (27), an inverting double pendulum problem 

will be used, as seen in Figure 1. The design objective is to minimize 

the power it takes to move the manipulator from its initial hanging 

configuration, ��, to the target inverted configuration, �Se. The double 

pendulum is an under-actuated system, where only joint h/ is actuated 

(by input wrench g/), and the mass of the second link is uncertain, 

therefore, the motion planning problem may be appropriately defined 

by (27).  

 
Figure 1—A simple illustration of the under-actuated 
uncertain hybrid dynamics motion planning formulation; 
this problem aims to determine a power optimal motion 
plan subject to input wrench and terminal condition 
constraints. This is an uncertain system due to the 
uncertain mass of the payload. 

By parameterizing the actuated state profiles with B-Splines, as in 

(4), and using the hybrid dynamics defined in (9), (27) results in a 

finite search problem seeking for spline control points, Ç, and terminal 

time, �d, that minimize the system’s power. Therefore, the problem’s 

optimization variables are B = �Ç, �d¡. Assuming a soft terminal error 

expected value condition is used, the objective function becomes È = É ∙ J¬/ + Ë ∙ J¬� from (28)–(29); where a and b are scalarization 

constants. 

The actuators are bounded in their torque supply. Additionally, 

suppose the design has a specified variance in the terminal error 

conditions (30) that must be satisfied. Implementing both of these 

design constraints as hard constraints takes the form, 
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]:   Ì � ≤ � ≤ �Íº·�Se	� ≤ º·�Se	� Î 
where �g, g̅¡ are the minimum/maximum input bounds respectivelyº·�Se	�

 is the maximum terminal error variance.  

This formulation allows a design engineer to answer the question, 

Given actuator and terminal error variance 

constraints, what motion plan will minimize the 

system's power over the trajectory when accounting 

for all possible systems within the probability space

Without accounting for the uncertainty directly in the dynamics 

and motion planning formulations, design engineers would have a 

difficult time answering this question. As a result, manufacturing lines, 

or other applicable applications, would result in reduced yield rates 

potentially affecting a company’s financial bottom-line

The solution to this problem with the deterministic formulation, as 

defined in (10), results in an power optimal solution of1060 �Ñ� with t½ = 5.66 seconds; all system parameters are set equal 

to one, θi = 1 (with SI units) except the length of the first link is set to 

0.5 (Ô); initial conditions ��0� = '−Õ, 0) and
 
�� �0�

terminal conditions ��t½� = '0, 0) and
 
�� �t½� = '0, 0)

input limits are g = −10, g̅ = 10 �Ö ∙ Ô�. The resulting optimal 

motion plan’s configuration time history is shown in Figure 

Figure 2—The power optimal configuration time history
the deterministic inverting double pendulum
solution resulted in a  P`×` �Ø� design. 

The value of the new framework is best illustrated by applying the 

deterministically designed motion profile to an uncertain system. 

Figure 3 and Figure 4 show the results of the deterministic motion plan 

applied to a system with a single uncertainty; the second link has an 

uncertain mass with ¦Ù� = 1 ��Ú� and ºÙ�� = 0.5
shows that the resulting input wrench profile exceeds both the upper 

and lower bounding constraints of  g = −10,
Additionally, Figure 4 shows that the target terminal configuration was 

not satisfied and an excessive terminal error variance is experienced. 

 

(34) 

are the minimum/maximum input bounds respectively; 

esign engineer to answer the question,  

Given actuator and terminal error variance 

constraints, what motion plan will minimize the 

system's power over the trajectory when accounting 

for all possible systems within the probability space? 

for the uncertainty directly in the dynamics 

and motion planning formulations, design engineers would have a 

difficult time answering this question. As a result, manufacturing lines, 

or other applicable applications, would result in reduced yield rates 

line.  

The solution to this problem with the deterministic formulation, as 

solution of J¬/ =
em parameters are set equal 

except the length of the first link is set to � � � = '0, 0) radians; ) radians; and the 

. The resulting optimal 

Figure 2. 

 
time history for 

double pendulum. This optimal 

The value of the new framework is best illustrated by applying the 

deterministically designed motion profile to an uncertain system. 

show the results of the deterministic motion plan 

applied to a system with a single uncertainty; the second link has an 5 ��Ú��. Figure 3 

shows that the resulting input wrench profile exceeds both the upper g̅ = 10 �Ö ∙ Ô�. 

shows that the target terminal configuration was 

atisfied and an excessive terminal error variance is experienced.  

Figure 3—The uncertain input wrench
deterministically design motion plan applied to an 
uncertain inverting double pendulum
uncertainty results in both the maximum and minimum 
input limits being exceeded. 

Figure 4—The joint time histories
design motion plan applied to an uncertain inverting double 
pendulum. The presence of the uncertainty results in the 
expected terminal error condition not being satisfied with 
excessive variance. 

Approaching the design with the new framework accounts for the 

uncertainties up front during the optimal search and results in a design 

that satisfies all constraints for all possible systems in the probability 

space. This is accomplished by application of

defined by (34); where º·�Se	� = 0.01
optimal solution of J¬/ = 310 �Ñ� with

same uncertain second link mass is reused.

optimal uncertain configuration time history is illustra

where the bounding �¦ − º  ��Ä{�,
time histories are displayed. The Euclidean norm of the 

value terminal configuration constrain

 
The uncertain input wrench time history for the 

motion plan applied to an 
inverting double pendulum. The presence of the 

uncertainty results in both the maximum and minimum 

 
ies for the deterministically 

motion plan applied to an uncertain inverting double 
f the uncertainty results in the 

expected terminal error condition not being satisfied with 

Approaching the design with the new framework accounts for the 

uncertainties up front during the optimal search and results in a design 

isfies all constraints for all possible systems in the probability 

space. This is accomplished by application of (27) with constraints 01 (Ô�). This results in a power 

with t½ = 4.46 seconds; where the 

same uncertain second link mass is reused. The resulting motion plan’s 

time history is illustrated in Figure 5; �, ¦ + º  �Ë�ÛÄ�¡ configuration 

The Euclidean norm of the soft expected 

value terminal configuration constraint was very acceptable, 
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µ­¶·��d�¸µ = 2.61Ä − 6 �Ô�. Figure 6 shows that the input wrench 

constraints for the entire probability space were satisfied in a standard 

deviation sense. Figure 7 show that the specified terminal error 

variance was also satisfied, º·�Se	� = 0.00321 ≤ º·�Se�
The reduced power of the uncertain design, as compared to the 

deterministic design, makes sense in that the expected input wrench 

values, ­[g/], of the uncertain design (as shown in Figure 

than those in the deterministic design (as shown in 

relationship is also true for h�/ (although are not illustr

the product of the reduced expected torque and joint rate yields a 

lower system power.  

Figure 5—The power optimal configuration time history
the uncertain inverting double pendulum. This optimal 

solution resulted in a  ÝP` �Ø� design. 

Figure 6—The uncertain input wrench time histor
from the motion plan generated by the new uncertain 
optimal design framework. Both the maximum and 
minimum input limits were satisfied, in a standard 
sense, for all systems within the probability space.

shows that the input wrench 

constraints for the entire probability space were satisfied in a standard 

he specified terminal error 

� e	 = 0.01 �Ô��. 

The reduced power of the uncertain design, as compared to the 

deterministic design, makes sense in that the expected input wrench 

Figure 6), are lower 

than those in the deterministic design (as shown in Figure 2). This 

(although are not illustrated), therefore, 

the product of the reduced expected torque and joint rate yields a 

 
configuration time history for 

. This optimal 

 
time history resulting 

new uncertain 
Both the maximum and 

minimum input limits were satisfied, in a standard deviation 
sense, for all systems within the probability space. 

Figure 7— The joint time histor
motion plan generated by the new uncertain optimal design
framework. The resulting terminal error variance satis

the specification; Þ·�ßà	á = `. ``Ýá
7 CONCLUSIONS 

This work has presented a new nonlinear programming based 

motion planning framework that treats uncertain 

dynamical systems. The framework allows practitione

sources of uncertainty using the Generalized Polynomial Chaos 

methodology and to solve the uncertain 

squares collocation method. Subsequently, statistical information of 

the uncertain hybrid dynamics may be include

function and constraints. The inverting double pendulum

illustrated how the new framework produces an optimal design that 

accounts for the entire family of systems enabling a practitioner to 

design an optimally performing system that is also robust.
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