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ABSTRACT 

This work presents a novel nonlinear programming based motion 

planning framework that treats uncertain fully-actuated dynamical 

systems described by ordinary differential equations. Uncertainty in 

multibody dynamical systems comes from various sources, such as: 

system parameters, initial conditions, sensor and actuator noise, and 

external forcing. Treatment of uncertainty in design is of paramount 

practical importance because all real-life systems are affected by it; 

ignoring uncertainty during design may lead to poor robustness and 

suboptimal performance. System uncertainties are modeled using 

Generalized Polynomial Chaos and are solved quantitatively using a 

least-square collocation method. The computational efficiency of this 

approach enables the inclusion of uncertainty statistics in the 

nonlinear programming optimization process. As such, new design 

questions related to uncertain dynamical systems can now be 

answered through the new framework.  

Specifically, this work presents the new framework through an 

inverse dynamics formulation where deterministic state trajectories 

are prescribed and uncertain actuator inputs are quantified. The 

benefits of the ability to quantify the resulting actuator uncertainty are 

illustrated in a time optimal motion planning case-study of a serial 

manipulator pick-and-place application. The resulting design 

determines a feasible time optimal motion plan—subject to actuator 

and obstacle avoidance constraints—for all possible systems within 

the probability space.  The forward dynamics formulation (using 

deterministic actuator inputs and uncertain state trajectories) is 

presented in a companion paper. 

1 INTRODUCTION 
Design engineers cannot quantify exactly every aspect of a given 

system. These uncertainties frequently create difficulties in 

accomplishing design goals and can lead to poor robustness and 

suboptimal performance. Tools that facilitate the analysis and 

characterization of the effects of uncertainties enable designers to 

develop more robustly performing systems. The need to analyze the 

effects of uncertainty is particularly acute when designing dynamical 

systems. Frequently, engineers do not account for various uncertainties 

in their design in order to save time and to reduce costs. However, this 

simply delays, or hides, the cost which is inevitably incurred down-

stream in the design flow; or worse, after the system has been 

deployed and fails to meet the design goals. Ultimately, if a robust 

system design is to be achieved, uncertainties must be accounted for 

up-front during the design process.  

This work presents a novel nonlinear programming (NLP) based 

motion planning framework that treats uncertain fully-actuated 

dynamical systems described by ordinary differential equations 

(ODEs). System uncertainties, such as  parameters, initial conditions, 

sensor/actuator noise, or forcing functions, are modeled using 

Generalized Polynomial Chaos (gPC) and are solved quantitatively 
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using a least-square collocation method (LSCM). The computational 

efficiencies gained by gPC and LSCM enable the inclusion of 

uncertainty statistics in the NLP optimization process.  

Specifically, this work presents the new framework through an 

inverse dynamics formulation where deterministic state trajectories are 

prescribed and uncertain actuator inputs are quantified. The benefits of 

the ability to quantify the resulting actuator uncertainty are illustrated 

in a time optimal motion planning case-study of a serial manipulator 

pick-and-place application. The resulting design determines a time 

optimal motion plan—subject to actuator and obstacle avoidance 

constraints—for all possible systems within the probability space.   

The companion formulation based on uncertain forward dynamics 

is presented by the authors in [1]. Application of the uncertain forward 

dynamics has particular advantages for force controlled systems, while 

the uncertain inverse dynamics formulation presented in this work is 

more suitable for configuration/position controlled systems.  

It’s important to point out that the new framework is not 

dependent on the specific formulation of the dynamical equations of 

motion (EOMs); formulations such as, Newtonian, Lagrangian, 

Hamiltonian, and Geometric methodologies are all applicable. This 

work applies the analytical Lagrangian EOM formulation which is 

briefly introduced in Section 2; Section 3 briefly discusses the well 

studied deterministic motion planning problem; Section 4 reviews the 

Generalized Polynomial Chaos methodology for uncertainty 

quantification when using inverse dynamics; Section 5  introduces the 

new framework for motion planning of uncertain fully-actuated 

dynamical systems based on an uncertain inverse dynamics 

formulation; finally, Section 6  illustrates the strengths of the new 

framework through a serial manipulator pick-and-place application 

which is followed by concluding remarks in Section 7. 

2 MULTIBODY INVERSE DYNAMICS 
As a very brief overview, the Euler-Lagrange ODE formulation for 

a multibody dynamical system can be described by [2, 3],   ������, ����	�
 ��� + ������, �
 ���, ����	�
 ���+ ������, �
 ���, ����	    = ������, �
 ���, �
 ���, ����	 = ����    (1) 

where ���� ∈ ℝ��  are independent generalized coordinates equal in 

number to the number of degrees of freedom, �� (the illustrating case 

study uses relative joint angles but the formulation is not limited to 

such a choice); �
 ��� ∈ ℝ�� the rates of the generalized coordinates 

and �
 ��� are the associated accelerations—using Newton’s dot 

notation for a time derivative; ���� ∈ ℝ�� includes system parameters 

of interest (specifically, those with uncertainty as described in Section 

4); ������, ����	 ∈ ℝ��×�� is the square positive definite inertia 

matrix; ������, �
 ���, ����	 ∈ ℝ��×��  includes centrifugal, 

gyroscopic and Coriolis effects; ������, �
 ���, ����	 ∈ ℝ��  the 

generalized gravitational and joint forces; and ���� ∈ ℝ��  are the �� 
applied input wrenches. (For notational brevity, all future equations 

will drop the explicit time dependence.) 

The trajectory of the system is determined by solving (1) as an 

initial value problem, where ��0� = �� and
 

�
 �0� = �
 �. Also, the 

system measured outputs are defined by,  = !��, �
 , ��    (2) 

where  ∈ ℝ�" with �# equal to the number of outputs.  

A close inspection of (1) shows that the wrench inputs of fully-

actuated systems can be calculated through direct algebraic 

evaluations if the state trajectories are “known”, or prescribed,  

� = ���, �
 , �
 , ��    (3)

This is the inverse dynamics (ID) formulation and does not require 

numerical integration and can result in significant computational 

savings. 

3 DETERMINISTIC INVERSE DYNAMICS MOTION 
PLANNING  
The task of dynamic system motion planning is a well studied 

topic; it aims to determine a state, or input, trajectory to realize some 

prescribed objective. Sampled-based motion planning formulations, 

such as Rapid-exploring Random Trees (RRTs), primarily focus on 

finding a feasible solution [4-6]; where nonlinear programming 

formulations seek to determine at least a local optimal solution [7-12].  

Use of an inverse dynamics formulation requires a practitioner to 

define the state trajectory, $�, �
 , �
 %, over the entire motion plan. This 

is an infinite dimensional problem. Parameterized trajectories are 

commonly used to reduce the problem to a finite dimensional search. 

For example, the system’s configuration, �, can be represented with B-

Splines,  

&�', �� = ( )�,*+,���-��.�
�/�  (4) 

where - ∈ ℝ�� are  �01 control points; ) and * are the B-Splines’ 

basis functions and degree, respectively. The corresponding 

parameterizations for $�
 , �
 % are also B-Splines derived from ��', �� 

[13] ; ' ∈ ℝ�.�×�� is an vector of control points, -.    

Once the state trajectories have been parameterized the NLP-based 

deterministic motion planning problem may be formulated as, 23�4/$'%   5   s. t. � = ���, �
 , �
 , �� 9 = !�:, :
 , ;�    <� , �, ;� ≤ > 
 

(5)

where the state’s explicit dependence on their associated control points 

has been dropped for notational brevity. Equation (5) seeks to find the 

control points ' that minimize some prescribed objective function, J, 
while being subject to the inverse dynamic constraints defined in (3). 

Additional constraints may also be defined; for example, 

maximum/minimum actuator and system parameter limits or physical 

system geometric limits can be represented as inequality relations, <� , �, ;� ≤ >.  

The literature contains a variety of objective function definitions 

for J when used in a motion planning setting. Some commonly defined 

objective functions are,  5@, = �A (6) 

JBC = ( D�C��
�/, ,   ∀� (7) 

JBF = (|D�&
H|��
�/, ,   ∀� (8) 

JBI = ( D
�C��
�/, ,   ∀� (9) 

where (6) represents a time optimal design; (7) minimizes effort, (8) 

power, and (9) jerk.  

The solution to (5) produces an optimal motion plan under the 

assumption that all system properties are known (i.e., (3) is completely 

deterministic). The primary contribution of this work is the 
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presentation of a variant of (5) that allows (3) to contain uncertainties 

of diverse types (e.g., parameters, initial conditions, sensor/actuator 

noise, or forcing functions). The following section will briefly 

introduce Generalized Polynomial Chaos (gPC) which is used to 

model the uncertainties and to quantify the resulting uncertain input 

wrenches. 

4 GENERALIZED POLYNOMIAL CHAOS  
Generalized Polynomial Chaos (gPC), first introduced by Wiener 

[14], is an efficient method for analyzing the effects of uncertainties in 

second order random processes [15]. This is accomplished by 

approximating a source of uncertainty, J, with an infinite series of 

weighted orthogonal polynomial bases called Polynomial Chaoses. 

Clearly an infinite series is impractical; therefore, a truncated set of K# + 1 terms is used with K# ∈ ℕ representing the order of the 

approximation.  Or, 

J�N� = ( JOPO1"
O/� �N�Q�� (10) 

where  JO ∈ ℝ represent known stochastic coefficients; PO ∈ ℝ 

represent individual single dimensional orthogonal basis terms (or 

modes); N�Q� ∈ ℝ is the associated random variable for J that maps 

the random event Q ∈ Ω, from the sample space, Ω, to the domain of 

the orthogonal polynomial basis (e.g., N: Ω → [−1,1]).  
Polynomial chaoses are orthogonal with respect to the ensemble 

inner product, 〈P��N�, PO�N�〉  =  Z P��N�PO�N�[�N�\N,+,  =  0,    for i≠j (11)

where [�N� is the weighting function that is equal to the joint 

probability density function of the random variable N. Also, 〈ΨO , ΨO〉 = 1, ∀^ when using normalized basis; standardized basis are 

constant and may be computed off-line for efficiency using (11). 

Generalized Polynomial Chaos can be applied to multibody 

dynamical systems described by differential equations [16, 17]; where 

sources of uncertainty, such as  parameters, initial conditions, 

sensor/actuator noise, or forcing functions, are all treated in a unified 

manner. The presence of uncertainty in the system results in either 

uncertain states, as in a forward dynamics formulation (1) [1], or 

uncertain inputs, as in an inverse dynamics formulation (3). Therefore, 

proceeding with the inverse dynamics formulation, the uncertain input 

wrenches can be approximated in a similar fashion as (10), 

D��N; �� = ( D�O���`O�a
O/� �N�, 3 = 1 … ��  (12) 

where D�O��� ∈ ℝ�a again represents the stochastic coefficients—for 

the 3cd input wrench—but are now unknown functions of time, with �e ∈ ℕ representing the number of basis terms in the approximation.  

The stochastic basis of the inputs may be multidimensional in the 

event there are multiple sources of uncertainty. The multidimensional 

basis functions are represented by Ψf ∈ ℝ�a. Additionally, g becomes 

a vector of random variables, g = $N,, … , N��% ∈ ℝ�� and maps the 

sample space, Ω, to an �1 dimensional cuboid,  g: Ω → [−1,1]�� (as in 

the example of Jacobi chaoses). 

The multidimensional basis is constructed from a product of the 

single dimensional basis in the following manner, `O = P,�hPC�i … P���j� ,    3k = 0 … K#, l = 1 … �1 (13)

where subscripts represent the uncertainty source and superscripts 

represent the associated basis term (or mode). A complete set of basis 

may be determined from a full tensor product of the single 

dimensional bases. This results in an excessive set of �K# + 1��� basis 

terms. Fortunately, the multidimensional sample space can be spanned 

with a minimal set of  �e = ���m1"	!��! 1"!  basis terms. The minimal basis set can be determined by 

the products resulting from these index ranges, 3, = 0 … K#,  3C = 0 … �K# − 3,�, …,   3�� = 0 … oK# − 3, − 3C − ⋯ − 3���+,�q 

The number of multidimensional terms, �e, grows quickly with 

the number of uncertain parameters,  �1, and polynomial order, K#. 

Sandu et. al. showed that gPC is most appropriate for modeling 

systems with a relatively low number of uncertainties [16, 17] but can 

handle large nonlinear uncertainty magnitudes.  

Substituting (10) and (12) into (3) produces the following 

uncertain inverse dynamics (UID),   

( D�O���ΨO�a
O/� �g� = � r�, �
 , �
 , ( JkO���1"

O/� PkO�Nk�s ,
3 = 1 … �� , l = 1 … �1 

(14)

where the unknowns are now the �e�� stochastic input coefficients, D�O���.  

It is instructive to notice how time and randomness are decoupled 

within a single term after the gPC expansion. Only the stochastic 

coefficients are dependent on time, and only the basis terms are 

dependent on the �e random variables, g.  

The Galerkin Projection Method (GPM) is a commonly used 

method for solving (14), however, this is a very intrusive technique 

and requires a custom formulation of the inverse dynamic EOMs. As 

an alternative, sample-based collocation techniques can be used 

without the need to modify the base EOMs.  

Sandu et. Al. [16, 18] showed that the collocation method solves 

(14) by solving (3) at a set of points, tk ∈ ℝ�� ,   l = 1 … �u1, 

selected from the �1 dimensional domain of the random variables g ∈ ℝ��. Meaning, at any given instance in time, the random 

variables’ domain is sampled and solved �u1 times with g = tk  

(updating the approximations of all sources of uncertainty for each 

solve), then the unknown stochastic input coefficients D�O can be 

determined at that given time instance. This can be accomplished by 

defining the intermediate variables, 

vk �  ��; tk 	 = ( D�O���`O�a
O/� � tk 	,

3 = 1 … �� , l = 0 … �u1 (15) 

and substitute them into (14). This yields, v�k ��; tk 	 = ℱ o&, &
 , &
 , xyk ��; tk 	q ,3 = 1 … �� , l = 0 … �u1, z = 1 … �1 (16)

where, 

Θyk ��; tk 	 = ( JyO���1"
O/� PO� t�k 	,     

l = 0 … �u1, z = 1 … �1  (17)

Equation (16) provides a set of �u1 independent equations whose 

solutions determine the stochastic coefficients, D�O���. This is 

accomplished by recalling the relationship of the stochastic 
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coefficients to the solutions, v�k , shown in (15). In matrix notation 

(15) can be expressed for all inputs,  |� = �D����	}~�t�,           3 = 1 … ��  (18) 

where the matrix, �k,O = ~O� tk 	, ^ = 0 … �e , l = 0 … �u1 (19) 

is defined as the collocation matrix. It’s important to note that �e ≤ �u1. The stochastic coefficients can now be solved for using 

(18), D�O��� = �#|� ,        3 = 1 … �� , ^ = 0 … �e (20) 

where �# is the pseudo inverse of � if �e < �u1. If �e = �u1, then 

(20) is simply a linear solve. However, [18] presented the least-squares 

collocation method (LSCM) where the stochastic state coefficients are 

solved for, in a least squares sense, using (20) when �e < �u1. [18] 

also showed that as �u1 → ∞ the LSCM approaches the GPM 

solution; where by selecting 3�e ≤ �u1 ≤ 4�e the greatest 

convergence benefit is achieved with minimal computational cost. 

LSCM also enjoys the same exponential convergence rate as K# → ∞.   

The unintrusive nature of the LSCM sampling approach is 

arguably its greatest benefit; (3) may be repeatedly solved without 

modification. Also, there are a number of methods for selecting the 

collocation points and the interested reader is recommended to consult 

[16, 18-21] for more information.  

5 UNCERTAIN INVERSE DYNAMICS MOTION 
PLANNING 
Little work is found in the literature addressing motion planning 

for uncertain systems. The literature thus far has primarily addressed 

sensor and/or actuator noise [4, 22] and frequently only treats the 

system’s kinematics [23, 24].  

In [25], Kewlani presents an RRT planner for mobility of robotic 

systems based on gPC but refers to it as a stochastic response surface 

method (SRSM). Kewlani’s work is similar in spirit to this work, 

however, the main difference is Kewlani’s solution is developed only 

for determining a feasible motion plan. The motion planning 

framework of this paper is formulated within a NLP setting and thus 

benefits from the more efficient gradient-based searching techniques 

providing at least a locally optimal design.    

As such, the new NLP-based framework for motion planning of 

uncertain fully-actuated multibody dynamical systems, formulated 

with uncertain inverse dynamics, is, 23�4/$'%      5��; g�   s. t. ���; g� = ���, �
 , �
 , ���; g�	 9 = !�:, :
 , ;�    <� , �, ���; g�	 ≤ > 
 

(21) 

where (21) is a reformulation of (5) with uncertain actuator inputs. The 

most interesting part of (21) comes in the definition of the objective 

function terms and constraints. These terms now have the ability to 

approach the design accounting for uncertainties by way of expected 

values, variances, and standard deviations. Recalling the definitions of 

an expected value and variance, (7)–(9) may be redefined statistically: 

J�, = � �( z��τ��g�	C��
�/, � 

            = ∑ ∑ z��τ�O	C〈ΨO , ΨO〉�aO/����/, , ∀� (22) 

J�C = � � (|z�τ��g�y��g�|��
�/, � 

            = ∑ ∑ �z�τ�Oy�O〈Ψf, ΨO〉��aO/����/, , ∀� (23) 

J�F = � �( z��τ
 ��g�	C��
�/, � 

            = ∑ ∑ z��τ
 �O	C〈Ψf, Ψf〉�aO/����/, , ∀� (24) 

where � is a vector of optional scalarization weights; (22) encapsulates 

expected effort; (23) expected power; and (24) expected jerk. Notice 

that due to the orthogonality of the polynomial basis these 

computations result in a reduced set of efficient operations on the 

respective stochastic coefficients.  

The inequality constraints may also benefit from added statistical 

information. When using inverse dynamics, the input wrenches are 

uncertain. This uncertain quantity may also be bound by physical 

limits of the actuator; as an example, inequality constraints may be 

formulated as, < = ���� + ���  ≤ D̅ D ≤ ��� − ��� � ,      3 = 1,2 (25) 

where the mean ��� = τ�� is defined as in (22)–(24), the standard 

deviation ��� = �∑ τ�O�aO/,  is the root of the variance, and �D, D̅� are the 

minimum/maximum input bounds respectively.  

Deterministic terms, such as (6)–(9), may be combined with 

appropriately selected statistically based terms, such as (22)–(25), to 

form a final motion planning problem. This will be illustrated in the 

serial manipulator case-study in the following section.  

 
Figure 1—A simple illustration of the fully-actuated 
uncertain inverse dynamics motion planning formulation; 
this problem aims to determine a time optimal motion plan 
subject to input wrench and geometric collision 
constraints. This is an uncertain system due to the 
uncertain mass of the payload. 

6 A SERIAL MANIPULATOR PICK-AND-PLACE 
CASE-STUDY 
As an illustration of (21), the serial manipulator “pick-and-place” 

problem will be used (see Figure 1). The design objective is to 

minimize the time it takes to move the manipulator from its initial 

configuration, ��, to the target configuration, �c�. This results in a 
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deterministic objective function, 5 = t�, which is frequently referred to 

as a time optimal design. However, the payload mass, 

to be uncertain rendering the system dynamics uncertain. Since the 

uncertain serial manipulator is a fully actuated system, where the joints � = $&,, &C% are actuated with the input wrenches 

motion planning problem may be appropriately defined by 

By parameterizing the deterministic joint trajectories with B

Splines, as in (4), (21) results in a finite search problem seeking for 

spline control points, �, that minimize the trajectory time, 

Therefore, the problem’s optimization variables are 4
The actuators are bounded in their torque supply and the 

manipulator should neither hit the wall it’s mounted to nor the 

obstacle. The constraints may therefore be defined as,

<:   
���
�  ��� + ���  ≤ D̅ D ≤ ��� − ���       −y, ≤ 0  −yC ≤ 0−¡�,O ≤ 0

� 
where 3 = 1,2 and ^ = ¢£¤�¥¦§¨ for the signed distance, 

measured from each link of the serial manipulator to the obstacle

Notice the bounding constraints on the input wrenches are defined 

by their statistical mean and standard deviations, as in 

their uncertainty. Ideally these constraints would be 

extremes of the wrench distribution (i.e., the supremum

however, due to their computational complexity the approximation by 

the mean and standard deviation, as in (26), is used. 

Since the state trajectories are deterministic, the signed obstacle 

avoidance constraints, −¡�,O ≤ 0, and Cartesian wall avoiding 

constraints, −y,, −yC ≤ 0, are deterministically defined.

This formulation allows a design engineer to answer the question, 

Given actuator and obstacle constraints, what

“time optimal” motion plan that accounts for all 

possible systems within the probability space?

Without accounting for the uncertainty directly in the dynamics 

and motion planning formulations, design engineers would have a 

difficult time answering this question.  
The solution to this problem with the deterministic formulation, as 

defined in (5), results in a time optimal solution of t�
where all system parameters are set equal to one, units�; with initial conditions ��0� = $¬­ , ¬­% and

radians; terminal conditions ��t�� = $− ¬­ , − ¬­% and

radians; and D = −10, D̅ = 10 (Nm). The resulting 

wrench time history is shown in Figure 2. 

The solution from the new formulation, as defined in 

constraints defined by (26), results in a time optimalt� = 1.2 seconds; where all system parameters and initial/terminal 

conditions are defined the same as in the deterministic problem. The 

only difference in this problem definition, as compared to the 

deterministic problem, is the uncertain payload mass modeled with a 

uniform distribution having a 1 (kg) mean and 0.5 (kg) variance. 

resulting optimal uncertain input wrench time history is illustrated in 

Figure 3; where each input wrench is displaying its mean value and

bounding ��� + ��� time histories. Also, the resulting configuration 

time history for the optimal uncertain motion plan is shown 

4. 

is frequently referred to 

design. However, the payload mass, M�ξ�, is defined 

to be uncertain rendering the system dynamics uncertain. Since the 

uncertain serial manipulator is a fully actuated system, where the joints 

are actuated with the input wrenches � = $D,, DC%, the 

priately defined by (21).  

By parameterizing the deterministic joint trajectories with B-

results in a finite search problem seeking for 

nimize the trajectory time, t�. 4 = $�, t�%.  

The actuators are bounded in their torque supply and the 

manipulator should neither hit the wall it’s mounted to nor the 

be defined as, 

(26) 

the signed distance, ¡�,O , 

from each link of the serial manipulator to the obstacle. 

Notice the bounding constraints on the input wrenches are defined 

by their statistical mean and standard deviations, as in (25), to quantify 

uld be defined by the 

supremum and infimum), 

the approximation by 

Since the state trajectories are deterministic, the signed obstacle 

and Cartesian wall avoiding 

are deterministically defined. 

This formulation allows a design engineer to answer the question,  

Given actuator and obstacle constraints, what is the 

“time optimal” motion plan that accounts for all 

possible systems within the probability space? 

ccounting for the uncertainty directly in the dynamics 

and motion planning formulations, design engineers would have a 

deterministic formulation, as = 1.12 seconds;  θH = 1 �with SI 
and

 
�
 �0� = $0, 0% 

and
 

�
 �t�� = $0, 0% 

The resulting optimal input 

The solution from the new formulation, as defined in (21) with 

time optimal solution of 

; where all system parameters and initial/terminal 

conditions are defined the same as in the deterministic problem. The 

only difference in this problem definition, as compared to the 

deterministic problem, is the uncertain payload mass modeled with a 

rm distribution having a 1 (kg) mean and 0.5 (kg) variance. The 

resulting optimal uncertain input wrench time history is illustrated in 

; where each input wrench is displaying its mean value and 

time histories. Also, the resulting configuration 

time history for the optimal uncertain motion plan is shown in Figure 

Figure 2—The time optimal input wrench 
the deterministic serial manipulator ‘pick
problem. This optimal solution resulted in

Figure 3—The time optimal uncertain input wrench 
histories for the uncertain serial manipulator ‘pick
place’ problem. Each input wrench is displaying its mean 

value and bounding t�¹ + º�¹ time histories. This optimal 

solution resulted in a  »¼ = ½. ¾ (s)

Therefore, the time optimal solution from the uncertain problem 

resulted in a more conservative answer (1.2 secon

1.12 seconds). This is a sensible solution; close inspecti

shows the deterministic solution drove the input wrenches to their 

extreme bounds of +/-10 (Nm) at certain points during the motion 

profile. Clearly, introducing the uncertain mass to the sys

the amount of input torque required for the system to reliably follow 

the specified state trajectory. In fact, Figure 

input wrenches induced by the uncertain mass. The uncertain optimal 

motion plan from (21) effectively pushed the input wrench distribution 

inside the actuation limits, �D, D̅�; this results in a slower 

solution, however, all realizable systems within the probability space 

of the uncertain mass are now guaranteed to satisfy the constraints. In 

other words, the time optimal solution to

 
The time optimal input wrench time histories for 

the deterministic serial manipulator ‘pick-and-place’ 
problem. This optimal solution resulted in a  »¼ = ½. ½¾ (s). 

 
The time optimal uncertain input wrench time 

for the uncertain serial manipulator ‘pick-and-
Each input wrench is displaying its mean 

time histories. This optimal 

(s). 

solution from the uncertain problem 

resulted in a more conservative answer (1.2 seconds as compared to 

1.12 seconds). This is a sensible solution; close inspection of Figure 2 

shows the deterministic solution drove the input wrenches to their 

10 (Nm) at certain points during the motion 

profile. Clearly, introducing the uncertain mass to the system affected 

the amount of input torque required for the system to reliably follow 

Figure 3 shows the distribution of 

input wrenches induced by the uncertain mass. The uncertain optimal 

effectively pushed the input wrench distribution 

; this results in a slower time optimal 

solution, however, all realizable systems within the probability space 

of the uncertain mass are now guaranteed to satisfy the constraints. In 

solution to (21) produces the minimum 

5 Copyright © 2011 by ASME
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time for the entire family of systems. Relying only on the 

contemporary deterministic problem formulation in 

unrealizable trajectory for a subset of the realizable systems.

Additionally, the author’s companion paper [

showing that use of a parallelized LCSM based gPC in the new 

framework allows for efficient optimal motion planning of uncertain 

dynamical systems; where the additional cost reduces as the number of 

available parallel processors increases. 

A final observation is that the uncertain inverse dynamics

planning framework embodied in (21) is most applicable to 

configuration/position controlled systems, where states are prescribed 

as they are in (21). However, force controlled systems may be better 

designed through application of the companion framework based on 

uncertain forward dynamics presented by the authors in 

Figure 4—The final optimal configuration time history of the 
uncertain serial manipulator ‘pick-and-place’ application 
involving collision avoidance and actuator constraints.

7 CONCLUSIONS 
This work presents a new nonlinear programming 

planning framework that treats uncertain fully-actuated dynamical 

systems. The framework allows practitioners to model sources of 

uncertainty using the Generalized Polynomial Chaos met

to solve the uncertain inverse dynamics using a le

collocation method. The uncertainty aware design is obtained by 

including statistical information of the uncertain inverse dynamics 

the NLP’s objective function and constraints. The serial manipulator 

case study illustrated how the new framework produce

design that accounts for the entire family of systems enabling a 

practitioner to design an optimally performing system that is also 

robust.  
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