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Abstract— Dynamic bipedal walking is susceptible to
external disturbances and surface irregularities, requiring
robust feedback control to remain stable. In this work, we
present a practical hierarchical push recovery strategy that
can be readily implemented on a wide range of humanoid
robots. Our method consists of low level controllers that
perform simple, biomechanically motivated push recovery
actions and a high level controller that combines the low level
controllers according to proprioceptive and inertial sensory
signals and the current robot state. Reinforcement learning is
used to optimize the parameters of the controllers in order
to maximize the stability of the robot over a broad range of
external disturbances. The controllers are learned on a physical
simulation and implemented on the Darwin-HP humanoid
robot platform, and the resulting experiments demonstrate
effective full body push recovery behaviors during dynamic
walking.

Keywords: Full Body Push Recovery, Reinforcement Learning,
Humanoid Robots

I. INTRODUCTION

Humanoid robots are not intrinsically stable, so stumble
and push recovery are critical to allow them to operate in
unconstrained environments. For example, typical living and
office environments are full of potential objects and people
the robot could collide with, and the walking surfaces contain
surface irregularities such as bumps and debris the robot
could step upon. Even if the environment is perfectly flat
and clear of obstacles, simple open loop walk controllers
fail due to imperfect modeling of the robot and its actuators.

Thus, the problem of push recovery has been a topic of
major interest in humanoid robot research. One approach
in this area uses a full dynamic model of the robot and
very fast feedback control to reject external forces applied to
the robot using force controlled actuators [1], [2]. However,
such an approach is quite difficult to implement on currently
existing humanoid platforms as they require multi-axis force
sensors and force controlled actuators, in addition to a
precise dynamic model of the robot and a large amount of
computational processing power.

Another direction in push recovery research focuses on
biomechanically motivated, simple push recovery behaviors
humans are known to perform in response to unexpected
perturbations [3], [4], [5], [6], [7], [8]. In this approach,
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Fig. 1. Overview of the hierarchical push recovery controller.

a simplified model of the robot is used to analytically
derive appropriate recovery responses given knowledge of
the robot state. Although this approach is simple in principle,
there are a number of practical issues before successful
implementation on generic humanoid robot platforms. In
particular, these methods assume precise knowledge of the
dynamical robot state as well as force controlled actuators.
Most of these methods have also been only demonstrated
using a single push recovery controller on a stationary robot.
So there are still many open questions concerning how to
construct a robust and generic push recovery behavior for
humanoid robots similar to what humans display.

The aim of our work is to design a practical, situationally-
aware full body push recovery strategy for humanoid robots
that uses only

• commonly available sensory data
• position controlled actuators
• relatively slow feedback control

To fulfill such requirements, we employ a hierarchical
control structure shown in Figure 1. We use three low-
level biomechanically motivated push recovery controllers,
whose outputs are fed into a walk controller that generates
joint position commands for all the actuators. A high level
controller receives state information from proprioceptive and
inertial sensors as well as all the low level controllers, and
generates high level command parameters for the lower-
level controllers based upon this information. However, this
approach has two main problems that need to be resolved. We
cannot directly employ an analytically derived push recovery
control as the precise physical state of the robot such as
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the center of mass velocity is not available from the simple
sensors, and it is difficult to design the high level controller
without proper analytic model.

We solve both design problems by learning an appropri-
ate controller using training examples [9]. We use a rein-
forcement learning (RL) algorithm which finds the optimal
mapping from a simplified state space to recovery actions
that maximizes a predetermined reward function over time.
Controllers are trained using repeated trials to maximize the
stability of the robot under external disturbances. Another
advantage of this approach is that as it can use a full-
body humanoid model or even the physical robot to learn
the controller, it has potential to learn better controller than
analytic approaches assuming simplified models.

This paper is organized as follows. Section II introduces
the three low level push recovery actions and explains how
we implement them on a humanoid robot with position
controlled actuators. Section III explains the high level
controller that modulates the low level push recovery ac-
tions, and how the machine learning optimization problem
is defined. Section IV addresses the learning of the full
push recovery controller from experience in a simulated
environment, and Section V shows the experimental results
when the trained push recovery controller is implemented
on a small humanoid robot. Finally, we conclude with some
potential issues and future directions arising from this work.

II. BIOMECHANICALLY MOTIVATED PUSH RECOVERY
CONTROLLERS FOR HUMANOID ROBOTS

Biomechanical studies show that human beings display
three distinctive motion patterns in response to a sudden
external perturbation, which we will denote as ankle, hip
and step recovery strategies. In this section, we will introduce
each of the three push recovery actions in detail, and explain
how these push recovery strategies can be implemented on
a humanoid robot with position-controlled actuators.

A. Ankle Controller

The ankle controller is a push recovery strategy which
keeps the center of mass (CoM) within the base of support
(BoS) by applying control torque on ankle joints. It can be
implemented by using a simple p-control on ankle torque,
but it cannot be directly implemented on generic robots
without torque controlled actuators. One option is controlling
the target position of ankle actuators [10]. However we
have found this approach has some practical limitations
as the feet of small humanoid robots tend to get tipped
under disturbance, rendering the direct control of ankle less
effective.

Instead, we take the indirect approach of controlling the
zero moment point (ZMP) by adding an auxiliary zero
moment point (ZMP) paux that can be controlled in real time
to augment the reference ZMP trajectory pre f as in [11], [12].

ZMPtarget = pre f + paux (1)

If we assume the linear inverse pendulum model (LIPM)
and walk controller that controls the movement of CoM so

a)

b)

c)

Fig. 2. Three biomechanically motivated push recovery controllers for a
position controlled humanoid robot: a) ankle controller, b) hip controller, c)
step controller

that the actual ZMP of the robot follows the target ZMP
trajectory, the effective inertia force applied on the torso is

f =−Mg
z0

paux, (2)

where M is the mass of torso, g the gravity constant, and z0
is the height of CoM. This corresponds to an effective ankle
torque of

τankle = Mgpaux (3)

In this manner, we can indirectly implement the ankle
recovery strategy by controlling the auxiliary ZMP paux,
given a ZMP based walk controller.
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B. Hip Controller

The hip controller is a push recovery strategy which uses
angular acceleration of the torso and limbs to counter the
movement of the CoM. When a human is pushed from
behind, he rotates his torso towards the front. This seemingly
counterintuitive motion generates backward ground reaction
force, which pulls the CoM back towards the BoS.

An analytic analysis uses the flywheel model in [5]. We
employ a simple torque profile in the form of bang-bang
control on the hip:

τhip(t) = τmaxu(t)−2τmaxu(t−TR1)+ τmaxu(t−TR2) (4)

θ(TR2) = θmax (5)

where τmax is the maximum torque that the joint can apply,
u(t) is the unit step function, TR1 is the time the torso stops
accelerating, TR2 is the time torso comes to a stop and θmax
is the maximum joint angle. We can further control the
influence on angular momentum by controlling TR1 and TR2.

We implement this controller with position controlled
actuators by specifying the target angle of the hip actuator
as a control input θtarget . A position controlled actuator with
high proportional gain applies maximum torque τmax until
the hip angle almost reaches θtarget , and applies negative
torque to stop, which approximates the bang-bang control
profile shown above. After reaching the target position, the
controller should move the hip angle back to its initial value.
We add a binary state variable PShip to implement this two-
phase behavior.

C. Step Controller

The step controller is a push recovery strategy which
effectively moves the BoS by taking a step. This strategy
has been studied using the capture point concept, defined as
the point on the ground where the robot can step in order to
bring itself to a complete stop [5]. Analytical analysis with
the flywheel model shows that the theoretical capture point
of a robot without torso momentum control is proportional
to the velocity of torso

xcapture = ẋ
√

z0

g
. (6)

We implement this controller by extending the walk con-
troller so that the target foot position can be overridden with
the control input xcapture, so that the next step goes to desired
capture point. A binary state variable PSstep is used to denote
whether the walk controller is overridden or not.

However, we have found there are some implementation
issues with such a modification of the walk controller. The
robot may easily become tipped, which makes the foot
kick the ground during stepping and lose balance. The
support foot also needs to be appropriately chosen so that
it keeps contacting the ground during this perturbation. We
have made three modifications to handle the special case of
stepping under large perturbation. First, the optimal swing
leg is determined based on the current configuration of feet,
the phase of walking and the direction of perturbation so that

the current pivot foot should not be chosen as the stepping
foot. Second, the height and orientation of both feet are
modified using inertial sensors during single support phase
so that the swing foot lands squarely on the surface. Finally
we apply lower the electrical motor compliance of the swing
leg to reduce the shock of abrupt landing.

III. HIGH LEVEL PUSH RECOVERY CONTROLLER

In the previous section, we explained three biomechani-
cally motivated push recovery strategies and how these push
recovery controllers are implemented on a humanoid robot
with position controlled actuators.

But human beings are also capable of performing more
generic, situationally aware push recovery behavior based
upon composing those simple push recovery strategies. For
example, humans rely on the ankle strategy when the per-
turbation is small, and then use a combination of strategies
when the perturbation becomes larger. Humans rely more on
the ankle strategy when their posture is stable, and use other
strategies in more unstable positions.

To be able to mimic such push recovery behaviors, we
use a high level controller that determines when and how to
use the low level push recovery controllers based on current
sensory information and the current state of the low-level
controllers. We do not have a good analytical model for
such a task, and hand designing such a controller without
analytical model can be very difficult. Instead, we rely upon a
machine learning approach to learn an appropriate controller
from experience.

In this section, we briefly explain the walk controller
we use, and the walk state and sensory information which
comprise the inputs of the high level controller. Finally we
describe the high level controller in detail, and explain how
reinforcement learning is used to determine the appropriate
parameters.

A. Walk Controller and Walk State

We use a periodic, linear inverse pendulum model (LIPM)
based walk controller. As the target application of our robot
requires agile omindirectional movement, ZMP preview con-
trol [13] is not utilized due to its control latency. Instead,
we assume a piecewise linear ZMP trajectory with endpoint
constraints, and use an analytical solution of the ZMP
equation to calculate the torso trajectory. Foot and ZMP
trajectories are generated in real time using the current state
and command velocities, and the torso position is calculated
to satisfy the ZMP equation. Although the walk controller
itself has a number of discrete and continuous states, we use
a single discrete walk state as input to the push recovery
controller:

WS = {STOP,DS1,SS,DS2} (7)

where each state is defined as follows:
• STOP: double support state where CoM and ZMP of

the robot lie on the middle point of two feet.
• DS1: double support state where ZMP and COM is

moving towards current support foot.
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• SS: single support state where ZMP lies in the support-
ing foot.

• DS2: double support state where ZMP and CoM is
moving back to the middle point of two feet.

B. Sensory Information

One of our aim is to employ commonly available sensors
for sensory feedback. One popular option is an inertial
measurement unit (IMU), which consists of inexpensive rate
gyroscopes and accelerometers mounted on the torso of the
robot. Typically these signals are filtered to get an estimate
of the torso angle, which is used to determine the current
posture of the robot [14]. We use the filtered torso angle,
θIMU , as the first sensory feedback signal.

In addition to the filtered torso angle, raw gyroscope and
accelerometer signals have also been used for push recovery
feedback, but gyroscope are more commonly used since they
are not corrupted by linear motion of the robot [10]. In this
work, we also use the raw gyro value θgyro as an additional
sensory feedback signal.

Finally, we use the current joint encoder angles from the
actuators. With this information and the forward kinematics
model of the robot, we can calculate the relative orientation
of the feet from the torso. With the torso angle estimate, we
can determine how the current support foot is tipped. We
use this estimate of foot tip angle θ f oot as the final sensory
feedback signal.

C. High Level Push Recovery Controller

The high level controller should choose appropriate pa-
rameters for the three low level controllers based upon the
current walk state and sensory information. It is difficult
to derive an analytic controller without full knowledge of
the current state, and designing such a controller by hand is
not very practical. Instead, we formulate the problem as a
reinforcement learning (RL) problem and train it using past
experience; such an approach has been previously demon-
strated in other robots [10], [15], [16], [17], [18].

RL learns the policy π , which is a mapping from state S
to action A, in order to maximize long term reward R. We
can formalize the high level control task as a RL problem by
defining the key elements of RL: S, A and R. The state S can
be defined as a combination of current sensory information
and the walk and push recovery controller states

S =
{

θIMU ,θgyro,θ f oot ,WS,PShip,PSstep
}

(8)

The desired action A are the inputs to the three low level
push recovery controllers

A =
{

paux,θtarget ,xcapture
}

(9)

Finally, we use a reward R defined as

R =
∣∣θgyro

∣∣2 + g
z0
|θIMU |2 (10)

which is similar to the residual stopping energy used in [9].
As we formalize the controlling task as a RL problem, we
can use well-known RL algorithms to train the controller.

Fig. 3. Comparison of the resulting stability region over a range of impulse
perturbations.

However its continuous, high dimensional state and action
space makes it difficult to efficiently learn the appropriate
parameters using limited training data.

Thus, we adopt three simplifications over the general
formalization shown above: a) using a parameterized policy
function, b) factoring the state and action spaces and c)
discretizing the state space. In this simplified formulation,
the low level controller inputs are defined as a parameterized
function of continuous sensory information f with adjustable
parameter wi.

paux = f (θIMU ,θgyro,θ f oot ,w1) (11)

θtarget = f (θIMU ,θgyro,θ f oot ,w2) (12)

xcapture = f (θIMU ,θgyro,θ f oot ,w3) (13)

We discretize the state by quantizing the sensory information
ˆθIMU , ˆθgyro, ˆθ f oot

Ŝ =
{ ˆθIMU , ˆθgyro, ˆθ f oot ,WS,PShip,PSstep

}
(14)

and actions are now the parameter sets for each low level
controller

Â = (w1,w2,w3) (15)

which may also be quantized to simplify the learning prob-
lem. The reward function R is unchanged from before.

IV. LEARNING PUSH RECOVERY CONTROLLER

We ran a number of trials in physical simulation to train
the push recovery controller. In this section we discuss the
details of training the push recovery controller.

A. Simulation Setup
We have built a open-source simulation environment by

integrating the Open Dynamics Engine (ODE) with Matlab
based controllers and graphics, which provides us a great
controllability and repeatability needed for machine learning
setup. The robot model is modeled after the actual physi-
cal properties of the DARwIn-HP robot, and each joint is
controlled by a high gain p-controller. The controller update
frequency is set to 50Hz, and a time step of 0.0001s is used
for the physics simulation.
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a) without push recovery controller

b) with push recovery controller

Fig. 4. Learned push recovery controller in the simulated environment.
The same amount of frontal and lateral impulse force is applied at the torso
of the robot.

B. Reinforcement Learning Setup

To train the controller, we use the stochastic policy gradi-
ent RL algorithm [10], [17], [18] which randomly generates
a number of test policies around the current best policy and
use stochastic gradient descent to improve the policy. For the
parameterized policy function f , we use a linear function
over all inputs θIMU ,θgyro,θ f oot with separate deadband,
gain, punch and saturation values as parameters wi. At each
trial, the robot is reset to an initial standing pose and an
impulsive force is applied for one time step. Each trial lasts
for 2 seconds and the reward values are averaged over the
trial period to evaluate the policy. 20 trials are done at each
episode.

C. Results

Figure 3 shows stability of the robot under a broad range of
two dimensional perturbations after 100 episodes of training.
We see that the learned push recovery controller can balance
the robot under a wider range of perturbations. Figure 4
compares the outcome of frontal and lateral perturbation
with and without the learned push recovery controller. Again
we can see that our push recovery controller can perform a
realistic combination of push recovery strategies, and helps

a) frontal push

b) lateral push

Fig. 5. Full body push recovery during walking. The robot is set to walk
forward at 12 cm/s. The same direction and magnitude of impulse force is
applied for both a) and b). We see the robot reacts differently to the same
perturbation according to the current walk state.

the robot withstand sudden perturbation that would otherwise
cause it to fall down. Figure 5 shows the push recovery
behavior while the robot is walking forward. We see that our
push recovery controller performs the appropriate recovery
action depending upon the current state of it walking.

V. EXPERIMENTAL RESULTS

After training the push recovery controller in the simu-
lated environment, we tested our algorithm using a small
humanoid robot. In this section we briefly introduce the
DARwIn-HP robot platform, and the experimental evaluation
of the push recovery controller using this experimental
platform.

A. Experimental Setup

We use the humanoid robot DARwIn-HP made by the
RoMeLa laboratory at Virginia Tech. It is 56 cm tall, weighs
4 kg, and has 20 degrees of freedom. It has a web camera for
visual feedback, and a 3-axis accelerometer and 2-axis gyro
for inertial sensing. Position controlled Dynamixel servos are
used for actuators, which are controlled by a microcontroller
connected to an Intel Atom based embedded PC at a control
frequency of 60hz. In this work, we use the controller trained
using the simulated environment without additional training.
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Fig. 6. Push recovery behavior during walking by a DARwIn-HP robot.
The robot was set to walk in place and then pushed from behind.

We do not use arm motions for the hip recovery strategy on
the physical robot, as repeated falls during the experimental
trials tend to break the arm servos if powered on.

B. Results

Figure 6 shows the push recovery behavior the robot
displays during walking1. We can see that the push recovery
trained using the simulator works without modification on
the physical robot. It can also be clearly seen that the robot
can withstand larger perturbations with the push recovery
controllers than without them during walking.

VI. CONCLUSIONS

We have proposed a practical method to implement a
full body push recovery controller on a general humanoid
robot without specialized sensors and actuators. Three types
of biomechanically motivated push recovery behaviors are
implemented by low level controllers, which are modulated
by a high level controller based on inertial and proprioceptive
sensory inputs. The hierarchical controller is trained using
reinforcement learning to improve the push recovery perfor-
mance, and the learned parameters can be used in both the
simulation environment as well as on a physical humanoid
robot.

Our approach has a number of advantages over previous
approaches. As it is based on a number of well-motivated
simpler push recovery actions, it does not require high
processing power or specialized hardware with triaxial force
sensors and torque controlled actuators. Yet it is capable
of performing a combination of push recovery strategies
based upon the current state of the robot, without a precise
dynamical model of the environment.

1http://www.youtube.com/watch?v=fhTa4wTUN-o

Future work includes incorporating more efficient learning
algorithms, using perception to anticipate uneven terrains,
and applying these recovery strategies to more complex
dynamical motions.
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