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ABSTRACT 
Strategies for finding the shortest path for a mobile robot with 

two actuated spoke wheels based on variable kinematic 

configurations are presented in this paper. The optimal path 

planning strategy proposed here integrate the traditional 

constrained path planning tools and the unique 

kinematic configuration spaces of the mobile robot IMPASS 

(Intelligent Mobility Platform with Actuated Spoke 

System). IMPASS utilizes a unique mobility concept 

of stretching in or out individually actuated spokes in order to 

perform variable curvature radius steering using changing 

kinematic configuration during its movement. Due to this 

unique motion strategy, various kinematic topologies produce 

specific motion characteristics in the way of curvature radius-

variable steering. Instead of traditional differential drive or 

Ackerman steering locomotion, combinational path geometry 

methods, Dubins’ curve and Reeds and Shepp’s curve are 

applied to classify optimal paths into known permutations of 

sequences consisting of various kinematic 

configurations.  Numerical simulation is given to verify the 

analytical solutions provided by using Lagrange Multiplier.  

 

1          INTRODUCTION 
 

IMPASS is a novel leg-wheel robot developed at the Robotics 

and Mechanisms Lab (RoMeLa) at Virginia Tech [1-3]. The 

prototypes have been built to effectively demonstrate the 

actuated spoke wheel concept integrating into the leg-wheel 

robot. The latest IMPASS prototype is shown in Figure 1. 

Two rimless spoke wheels, mounted on a common axle, each 

contain three individually actuated spokes. These spokes each 

move through the hub, totaling in six feet on each hub. These 

six feet are situated evenly around the hub, with a common 

angle of 60 degrees between each spoke. Due to stretching in 

or out independently actuated spokes while it is walking, this 

highly mobile robot proves very valuable in application of 

traversing complex terrain in an intelligent manner by picking 

up the different kinematic topologies. This unique topology 

changing platform combines the efficiency of a wheeled robot 

and the mobility of a legged robot so that IMPASS is much 

more adaptable to wide range of unstructured ground 

environments than the wheeled robots and faster than the 

legged robots on smooth surfaces.                    

 
 

Figure 1.  The latest IMPASS Prototype. 
 

The changing topology of IMPASS produces twenty different 

mechanism cases during IMPASS’s moving locomotion, 

classified using the numbers and sequences of the spokes 

touching the ground[4].As the topological configuration 

changes, the mobility and kinematic characteristics will vary 

from case to case because of the non-slip constraints at the 

spoke foot [4-6]. The kinematic analysis of gait and gait 
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transition for IMPASS is presented in [6], which lays the 

foundation for the later on path planning studies.        

     

Due to the unique mobility platform, IMPASS performs the 

curvature variable steering in the use of kinematic topology 

switch by stretching in or out various spokes, rather than 

employ either the popular wheeled robot steering locomotion, 

Differential drive or Ackerman Steering, or a legged robot 

walking locomotion. The steering motion characteristics, with 

regard to steering curvature radius and steering angle, are 

discussed in [7] for typical kinematic topologies of IMPASS. 

 

This paper studies the path planning strategies based on 

kinematic topologies for IMPASS, which is in general, a 

sequence of kinematic topology to be taken, although it could 

be more complicated. In robotics, path planning was initially 

referred to as the Piano Mover’s Problem ---- how to move a 

piano from one place to another in a house without hitting 

anything. In artificial intelligence, planning was originally 

concerned with a search for a sequence of logical operators or 

actions that transform an initial world posture into a 

destination posture [8-9]. Even though each is originally 

considered as different problems, the fields of robotics and 

artificial intelligence have expanded their scope to share an 

interesting common ground. In this paper, the term path 

planning encompasses this common ground in a broad sense, 

which is defined as follows: ―Given a robot and a description 

of an environment, plan a shortest path between two specific 

locations with orientations.‖ Figure 2 illustrates the path 

planning problem statement for IMPASS from the initial 

posture (X0,Y0,𝜎0) to the destination posture (XN,YN,𝜎𝑁). The 

kinematic configurations are selected in an optimized way that 

tries to make this happen. The path planning strategies here 

ignore dynamics and other differential constraints and 

primarily focus on the translations and rotations required for 

IMPASS to produce curvature radius steering or straight line 

walking in an optimal way that respects the mechanical and 

kinematics limitations of the robot. 

 

 
 

Figure 2.  Path Planning Problem Definition for IMPASS. 
 

However, regarding to the shortest path finding between the 

initial and destination postures, IMPASS cannot follow the 

Dubin’s car or other wheel robot model, since IMPASS robot 

cannot change its turning curvature continuously and 

smoothly. Instead of that, IMPASS performs discrete steering 

by carrying on certain kinematic configuration transition for 

metamorphic topology transformation, so that the turning 

curvature of IMPASS has a much wider range but this makes 

its path discrete and discontinuously. Each kinematic 

configuration actually carries on certain motion mission, 

which will be discussed more in section IV and V. 

 

The remainder of this paper is organized as follows: The 

preliminaries of path planning with term definition are stated 

in section II. Section III presents the state of art of the wheeled 

robot locomotion. In section IV, the general kinematic 

configurations are briefly concluded case by case due to the 

changing topology mechanisms of the spoke wheel robot 

IMPASS. In section V, the motion characteristics of each 

kinematic topology case are discussed, and the general 

sequence-evolution expression of the foot position with 

orientation at each time-step is formulated in the use of the 

shifting angle and the step length of each stride in the forward 

direction, which satisfies all the kinematic configurations. In 

section VI, the shortest path finding strategies based on 

Dubin’s law are proposed and stated. Numerical simulation is 

given to verify the analytical solutions provided by using 

Lagrange Multiplier. In the end, conclusions and future work 

are discussed in section VII.  

 

2 PRELIMINARIES 
 

The path planning problem spans a broad subject field in 

robotics. However, there are several basic terminologies that 

arise throughout all of the topics covered as part of path 

planning. 

 

2.1 Posture: 
 

The posture, in this paper, represents the position and 

orientation of the robot. Path planning problems here involve a 

state space that captures all possible situations that could arise. 

 

2.2 Kinematic Configurations: 
 

Kinematic Configuration (K.C.) describes the specific 

mechanism topology at the particular moment. Kinematic 

Topology Case (K.T.C) is classified by how many left/right 

spokes touching the ground at certain moving direction[4]. 

The same K.T.C.s could have two different K.C.s due to the 

contrary moving directions: forward or backward. K.C. 

indicates the specific configuration, which leads to the certain 

motion-circular turning or straight line walking, which will be 

concluded in detail in section IV . 

 

 

2.3 A Criteria: 
 

This encodes the desired outcome of a plan in terms of the 

posture and K.Cs that are executed:  

1) Feasibility: find a plan that could reach the destination 

posture, regardless of its efficiency. 

2) Optimality: find an optimal plan in some carefully 

specified performance, in addition to arriving in a destination 

posture. 

The majority of literature in robotics and related fields 

pal
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focuses on optimality. In this paper, the shortest path finding 

is the primary focus. 

 

2.4 A Plan: 
 

In general, a plan imposes a specific strategy or behavior on a 

decision maker. In this paper, a plan simply specifies a 

sequence of K.C.s to be taken, although it could be more 

complicated. 

 

2.5 A Gait: 
 

A gait is characterized as the sequence of lift and release 

events of the individual legs. 

 

3 OVERVIEW IF THE WHEELED ROBOT 
STEERING LOCOMOTION 

 

There are various mechanisms existing for the wheeled robot 

locomotion, and a number of these are discussed in [10-11], 

involving differential drive, steering wheels (tricycle, bicycles, 

wagon) and Ackerman steering. However, no matter which 

mechanisms they are using, the wheels exploit friction or 

ground contact to enable the robot to move. This makes 

difference from IMPASS, which is considered performing 

discrete walking locomotion. But it shares some common 

steering concepts with differential drive and Ackerman 

steering. 

 

3.1 Differential Drive: 
 

Differential drive is perhaps one of the easiest and the most 

popular drive mechanism, which consists of two rigidly 

mounted motors/servos with wheels attached. There is usually 

the roller-ball for balance and stability.  It has two motors and 

drive wheels mounted co-linearly with the center of the base. 

It can turn about its center and move forward and backward. 

While we can vary the velocity of each wheel, for the robot to 

perform rolling motion, the robot must rotate about a point 

that lies along their common left and right wheel axis. The 

point that the robot rotates about is known as the ICC-

Instantaneous Center of Curvature, as shown in Figure 3 and 

Figure 4.  

 

The velocity difference of the two wheels varies the 

trajectories that the robot takes. Because the rate of rotation 

about the ICC must be the same for both wheels, the following 

equations yield: 

 

𝑅 =
𝑙

2

𝑉𝑟+𝑉𝑙

𝑉𝑟−𝑉𝑙
, 𝜔 =

𝑉𝑟−𝑉𝑙

𝑙
.                            (1) 

 

where l is the distance between the centers of the two wheels,  

𝑉𝑟 , 𝑉𝑙  are the right and left wheel velocities along the ground, 

and R is the instantaneous curvature radius of the robot 

trajectory (distance from ICC to the midpoint between the two 

wheels).  From eq. (1), we know that: 

1) When𝑉𝑟 = 𝑉𝑙 , 𝜔 is zero, and R becomes infinite, the robot 

will move in a straight line; 

2) When𝑉𝑟 = −𝑉𝑙 , R becomes zero, the robot will rotate about 

the midpoint of the wheel axis; 

3) When 𝑉𝑟  or 𝑉𝑙 = 0, then the wheel robot will rotate about 

the right/left wheel.  

 
 

Figure 3.  Kinematics for Differential Drive. 
 

We assume that the posture of the wheel robot is P(X, Y,𝜎), 

which indicates the position (X, Y), and the heading direction 

with the X axis 𝜎 , as shown in Figure 4. Then the location of 

ICC would be: 𝐼𝐶𝐶  𝑥 − 𝑅𝑠𝑖𝑛  𝜎 , 𝑦 + 𝑅𝑐𝑜𝑠  𝜎  . Here the 

control input would be  𝑣, 𝜔 , where v is the linear velocity of 

the robot, and w is corresponding to the angular velocity of the 

robot (notice: not for each wheel).  

 
 

Figure 4.  Differential Drive Forward Kinematics. 
 

 

3.2 Ackerman Steering: 
 

Ackerman steering, also known as car driving, is the type of 

steering found on most automobiles. One set of wheels, 

usually the drive wheels, are fixed while the other set pivots to 

steer the robot. The robot can have several wheels, but mush 

always have a single ICC, where all of its zero motion lines 

must meet, as shown in Figure 5.    

 

 
Fig. 5.  Kinematics for Ackerman Steering. 
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Under Ackerman steering, the vehicle rotates about a point 

lying on the line passing through the rear axle a distance R 

from the centerline of the wheel robot. At the same time, in 

order for the wheels to exhibit rolling motion, the other 

steering wheel must be rotated through an angle𝜃0, so that the 

kinematics geometry gives us the following equation: 

𝑐𝑜𝑡 𝜃𝑖 − 𝑐𝑜𝑡 𝜃0 =
𝑑

𝑙
.                         (2) 

where d and l are the longitudinal wheel distance between the 

centers of the two wheels,  𝜃𝑖 , 𝜃𝑜  are the relative steering 

angles of the inside and outside wheels. R is the instantaneous 

curvature radius of the robot trajectory (distance from ICC to 

the midpoint between the two wheels).   

 

 

4 GENERAL KINEMATIC TOPOLOGY CASES 
 

Historically, the changing topology analysis has been 

conducted using the terminology or concept of Mechanism 

with Variable Topologies (MVT) [12-14], Metamorphic 

Mechanism [15-16], or Kinematotropic Mechanism (KM) 

[17]. In our previous paper [7], the classification of general 

K.T.C.s has been presented in detail. However, the concept is 

simply restated here for the convenient understanding. Three 

basic motion types are produced for the path planning 

performance using three K.C. types, see in Figure 6. For 

instance, the positive Y axis indicates the forward direction of 

IMPASS, the left side K.T.C. produces left steering turn, 

while the same K.T.C. on the right side produces the right 

steering turn. Both of these kinematic configurations belong to 

the same 1-1 Parallel Unequal Case, but the effective spoke 

length ratio of the left and right spokes determines the 

direction of steering turn. The top K.T.C in Figure 6, leads to 

the straight line walking motion, since the effective spoke 

length of both sides of spokes touching the ground is equal. 

Here we define the effective spoke length as the distance from 

the ground contact point (A, B or C in Figure 6) to the 

respective hub center of each wheel.  

 
 

Figure 6.  K.T.C.s for IMPASS’s Walking and Steering 
Locomotion. 

 

Figure 7 shows the transition K.C.s of IMPASS. Any 

transitions between any K.C.s of Figure 6 have to go through 

the transition K.C.s in Figure 7 to complete the motion 

transition between left steering turn, right steering turn and 

straight line walking. 

 

 
Figure 7.  K.T.C.s for IMPASS’s Transition Locomotion. 

 

The K.C. describes the numbers and the sequence of the 

spokes touching the ground at each specific time moment [7]. 

Each specific topological configuration is named by n1-n2 

case (n1, n2=0, 1, 2, or 3).  

 

Table I. Nomenclature of Metamorphic Configuration 

Symbol Quantity 

L Length of the IMPASS axle 

𝐿𝑅𝑖−1
 𝑖 , 𝐿𝑅𝑖

 𝑖
 Right Effective Spoke Length during Step i*  

𝐿𝐿𝑖−1
 𝑖 , 𝐿𝐿𝑖

 𝑖
 Left Effective Spoke Length during Step i * 

𝑘𝑖  Respective parallel left/right effective spoke 

length ratio during Step i 

𝑅𝑅𝑖  Turning radius from the turning center to the 

right spoke foot at Gait i 

𝑅𝐿𝑖  Turning radius from the turning center to the 

left spoke foot Gait i 

𝑅𝑖
𝑖  Curvature radius from the turning center to the 

midpoint of the left & right spoke feet during 

Step i 

𝜑𝑖  Turning angle about the turning center 

during Step i  

𝜓𝑖  Heading angle during Step i 

L Length of the IMPASS axle 

𝐿𝑅𝑖−1
 𝑖 , 𝐿𝑅𝑖

 𝑖
 Right Effective Spoke Length during 

Step i*  

𝐿𝐿𝑖−1
 𝑖 , 𝐿𝐿𝑖

 𝑖
 Left Effective Spoke Length during Step 

i * 

𝑘𝑖  Respective parallel left/right effective 

spoke length ratio during Step i 

𝑅𝑅𝑖  Turning radius from the turning center to 

the right spoke foot at Gait i 

𝑅𝐿𝑖  Turning radius from the turning center to 

the left spoke foot Gait i 

*Step i: the step from Gait i-1 to Gait i 

BA

Straight Line Walking 

Right SteeringLeft Steering

BA

BA

1-1 Parallel Unequal Case 1-1 Skew Case

2-1 Transition Case

A B A C

A B C
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With respect to the forward direction of IMPASS, n1 

denotes the number of right wheel spokes, which are 

touching the ground, while n2 stands for the number of 

the left wheel spokes touching the ground. Each K.C. 

indicates the specific mechanism configuration at each 

time moment, which produces the specific motion—

such as left or right steering turn with different radius 

curvature or straight line walking with variable stride. 

The walking direction of IMPASS— right/ left turn or 

straight line walking is decided by the respective 

parallel right / left effective spoke length ratio 𝑘𝑖    (in 

Table 1): 𝑘𝑖    >1 indicates Left Steering Turn; 𝑘𝑖    <1is 

corresponding to Right Steering Turn; and 𝑘𝑖    =1refers 

to Straight Line Walking. 

 

 

5  MOTION CHARACTERISTICS FOR EACH 
KINEMATIC CONFIGURATION 

 

Figure 6 and Figure 7 illustrate the bidirectional 

transformation relationships between different kinematic 

configurations, which produce various motion types. This 

section will focus on the motion characteristics of each K.C.  

First of all, the right / left effective spoke length ratio 𝑘𝑖   is an 

important parameter, which could be preset before the robot 

takes any action. Again, the change of the 𝑘𝑖  value produces 

the changing of steering curvature radius or the steering 

/heading direction of the IMPASS robot. This changing 

process of 𝑘𝑖  value requires the robot to go through 2-1 

transition case and 1-1 skew case, as shown in Figure 7. 

 

5.1 1-1 Parallel Unequal Steering Case: 
 

The topology in this case can produce the left/right steering 

motion with/without changing the curvature radius. As shown in 

Figure 8, the right and left turning radius is calculated by: 

 

𝑅𝑅𝑖 =
1

1−1/𝑘𝑖
 𝐿2 +  𝐿𝑅𝑖 − 𝐿𝐿𝑖 

2,  

 

𝑅𝐿𝑖 =
1

1−𝑘𝑖
 𝐿2 + (𝐿𝑅𝑖 − 𝐿𝐿𝑖)

2.                    (3)     

 

where, 𝑅𝑅𝑖/𝑅𝐿𝑖  indicates the distance from the turning center Oi 

to the right/left spoke foot touching the ground at Gait i, as shown 

in Table 1. Positive means the spoke foot locates at the 

first/fourth quadrant, while negative represents the location at the 

second/third quadrant. L is the axel length, and 𝐿𝑅𝑖/ 𝐿𝐿𝑖  is 

corresponding to the right/left effective spoke length at Gait i. 

Here, we define the curvature radius 𝑅𝑖  as the distance from the 

turning center 𝑂𝑖  to the midpoint of the right, left spoke foot: 

 

𝑅𝑖 =
𝑘𝑖+1

2(𝑘𝑖−1)
 𝐿2 + (𝐿𝑅𝑖 − 𝐿𝐿𝑖)

2.            (4)     

 

Obviously, 𝑘𝑖 > 1  demonstrates left turn, whereas  𝑘𝑖 < 1 

means right turn. For𝑘𝑖 = 1, it belongs to the 1-1 Parallel Equal 

Case, which will be introduced in the next subsection. 

 

 
 

Figure 8.  Kinematic Topology of 1-1 Parallel Unequal 
Case during Step i. 

 
Considering the constraint condition of  𝑘𝑖 , we rewrite eq. (4) 

the curvature radius during step i as: 

 

𝑅𝑖
𝑖 =

𝑘𝑖+1

2(1−𝑘𝑖)
 𝐿2 + (𝑘𝑖 − 1)2𝐿𝐿𝑖

 𝑖2
.      (5) 

 
We have to notice that, Step i represents the gait transition 

from Gait i -1 to Gait i. Then during Step i+1, 𝐿𝐿𝑖  has 

different value from step i, that is 𝐿𝐿𝑖
i   ≠  𝐿𝐿𝑖

i+1 , which 

caused the discrete changing of curvature radius from  𝑅𝑖
𝑖  

to  𝑅𝑖
𝑖+1  . Here,  𝑅𝑖

𝑖  and  𝑅𝑖
𝑖+1  denote the discrete changing 

curvature radius at step i and step i+1. 

 
 

Figure 9.  Motion Characteristics of 1-1 Parallel Unequal 
Case. 
 
The turning angle 𝜑𝑖  is the anti-clockwise rotating angle about 

the turning center 𝑂𝑖  starting from the first pivot line (the line 

passing through the first pair of spoke feet touching the 

ground) during Step i (in Figure 8and Figure 9), which is 

obtained by: 

 

𝜑𝑖 = 𝐴𝑟𝑐𝐶𝑜𝑠
2𝐿2+(𝑘𝑖−1)2𝐿𝐿𝑖−1

 𝑖𝐿𝐿𝑖
 𝑖

2 [𝐿2+(𝑘𝑖−1)2𝐿𝐿𝑖−1
 𝑖2

][𝐿2+(𝑘𝑖−1)2𝐿𝐿𝑖
 𝑖2]

.    (6) 

 

The heading angle 𝜓𝑖  is the step orientation angle in anti-

clockwise direction departing from the first spoke feet pivot 

line during step i (in Figure 8 and Figure 9), which is 

expressed by: 

 

𝜓𝑖 = 𝐴𝑟𝑐𝐶𝑜𝑠
(1−𝑘𝑖)𝐿𝐿𝑖−1

 𝑖(2𝐿𝐿𝑖−1
 𝑖−𝐿𝐿𝑖

 𝑖)

2 [𝐿2+ 𝑘𝑖−1 2𝐿𝐿𝑖−1
 𝑖2

][𝐿𝐿𝑖−1
 𝑖2
−𝐿𝐿𝑖−1

 𝑖𝐿𝐿𝑖
 𝑖+𝐿𝐿𝑖

 𝑖2
]

. (7) 

 
The step length  ∆𝑖  (in Figure 8 and Figure 9) is the stride 

during step i which yields: 

φi
Oi

X
Y

Z

Ri

ψi

Oi

φi

(Xi-1,Yi-1,σi-1)

(Xi,Yi,σi)
Y

X

Ri
ψi∆i

Step i

i-1

i+1

θi
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∆𝑖=
𝑘𝑖+1

2
 𝐿𝐿𝑖−1

 𝑖2
− 𝐿𝐿𝑖−1

 𝑖𝐿𝐿𝑖
 𝑖 + 𝐿𝐿𝑖

 𝑖2
.         (8) 

 

In fact, the position and orientation of the robot at each time-

step (𝑋𝑖 , 𝑌𝑖 , 𝜎𝑖) at the Global Coordinate can be formulated as 

discrete optimization problems using the characteristic 

parameters the 𝑠𝑕𝑖𝑓𝑡𝑖𝑛𝑔 𝑎𝑛𝑔𝑙𝑒  𝜃𝑖 , and the 𝑠𝑡𝑒𝑝 𝑙𝑒𝑛𝑔𝑡𝑕 ∆𝑖, as 

shown in Figure 9. This general sequence-evolution 

formulation is deducted using transformation matrix: 

 

 

𝑋𝑖 = 𝑋𝑖−1 − ∆𝑖𝐶𝑜𝑠 𝜎𝑖 

𝑌𝑖 = 𝑌𝑖−1 + ∆𝑖𝑆𝑖𝑛(𝜎𝑖)
𝜎𝑖 = 𝜎𝑖−1 + 𝜃𝑖

 .                     (9) 

 

where, the 𝑠𝑕𝑖𝑓𝑡𝑖𝑛𝑔 𝑎𝑛𝑔𝑙𝑒  𝜃𝑖is defined as the shifting angle 

from the line vector of stride i-1 to the line vector of stride i: 

 

𝜃𝑖 = 𝜑𝑖−1 + 𝜓𝑖 − 𝜓𝑖−1.                          (10) 

 

From the general sequence-evolution formulation, we know 

that the position and orientation of the robot at each time-step 

( 𝑋𝑖 , 𝑌𝑖 , 𝜎𝑖 ) is only the function of the 𝑠𝑕𝑖𝑓𝑡𝑖𝑛𝑔 𝑎𝑛𝑔𝑙𝑒  𝜃𝑖  
and the 𝑠𝑡𝑒𝑝 𝑙𝑒𝑛𝑔𝑡𝑕 ∆𝑖.  
 

From the eq. (6-8) and (10), we can obtain that, for 1-1 

Parallel Unequal Case: 

 

𝜃𝑖 = 𝑓(𝐿𝐿𝑖−1
 𝑖, 𝐿𝐿𝑖

 𝑖) 

∆𝑖 = 𝑓 𝐿𝐿𝑖−1
 𝑖, 𝐿𝐿𝑖

 𝑖 .                           (11) 

 

Again, as indicated in Figure 6, the topology of 1-1 Parallel 

Unequal Case produces curvature radius-variable left turn or 

right turn, which depends on the right / left effective spoke 

length ratio𝑘𝑖 . When 𝑘𝑖  >1, left turn will be generated, as 

shown in Figure 9. If 𝑘𝑖  <1, right turn will be produced. When 

𝑘𝑖  = 1, the robot will perform straight line walking. That is, 

the walking direction of the robot is controlled by the 

changing of the 𝑘𝑖  value, which leads to the mechanisms with 

variable topology of IMPASS. This process of changing 

topology (changing 𝑘𝑖  value)  will not be completed until the 

robot carries out the 2-1 Transition Case and 1-1 Skew Case in 

Figure 7. This will be discussed in detail in the next 

subsection. 

 

5.2 2-1 Transition Case and 1-1 Skew Case: 
 

Imagine that, in Figure 8, at Gait i, if the left spoke touches the 

ground first, instead of both of the right and left spokes 

touching the ground at the same time, 2-1 Transition case will 

be generated. And then, if we lift the right spoke at Gait i-1, 1-

1 Skew Case will be produced. Both of these two transition 

cases are brought out during Step i, which is illustrated in 

Figure 10. This figure illustrated the switch from left steering 

to right steering of the robot, that is the changing from 𝑘𝑖  >1 

to 𝑘𝑖  <1.  

 

 
Figure 10.  Motion Characteristics of 2-1 Transition 
Case and 1-1 Skew Case. 
 

For the transition topology, the position and orientation of the 

robot during step i, ( 𝑋𝑖 , 𝑌𝑖 , 𝜎𝑖 ) also follows the general 

sequence-evolution formulation. However, the characteristic 

parameters will have different expression from eq. (6-8). The 

equation is not given here for concision. Please contact the 

author if you want more details. But they are all the function 

of the effective spoke length of the spokes actually touching 

the ground (1-1 Skew Case), and the right / left effective 

spoke length ratio𝑘𝑖 : 
 

  𝜃𝑖 = 𝑓 𝑘𝑖 , 𝐿𝐿𝑖−1

 𝑖
, 𝐿𝑅𝑖

 𝑖                                    

          ∆𝑖 = 𝑓 𝑘𝑖 , 𝐿𝐿𝑖−1

 𝑖
, 𝐿𝑅𝑖

 𝑖 .                     (12) 

 

5.3 1-1 Parallel Equal Case: 
 

When 𝑘𝑖  is changed to be 1, the topology of this 1-1 Parallel 

Equal Case will conduct straight line walking motion. Figure 

11 illustrates the motion characteristics transactions from 1-1 

Parallel Unequal Case to 2-1 Transition case and 1-1 Skew 

Case to 1-1 Parallel Equal Case. The motion characteristics of 

1-1 Parallel Equal case will actually follow all the equations 

from (6-8), but much easier, since 𝑘𝑖 = 1:  
 

𝜃𝑖 = 0°, 

∆𝑖 =  𝐿𝐿𝑖−1
 𝑖2
− 𝐿𝐿𝑖−1

 𝑖𝐿𝐿𝑖
 𝑖 + 𝐿𝐿𝑖

 𝑖2
.           (13) 

 

The position and orientation of the robot at each time-step i 

( 𝑋𝑖 , 𝑌𝑖 , 𝜎𝑖 ) also follows the general sequence-evolution 

formulation. 

 
Figure 11.  Motion Characteristics of 1-1 Parallel Equal 
Case. 

Oi

φi

(Xi-1,Yi-1,σi-1)

(Xi,Yi,σi)
Y

X

Ri
ψi

∆i

i

 i-1

 i+1

i-2

θi

(Xi-1,Yi-1,σi-1)

(Xi,Yi,σi)

Y

X

ψi

∆i

Step i

 i-1

i+1

i-2

θi
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6 PATH PLANING STRATEGIES 
 

A plan simply specifies a sequence of K.C.s o be taken, 

although it could be more complicated. In order to solve path 

planning problem, two sub problems must be solved: the 

motion characteristics of the K.C.s, and the planning 

strategies. The planning strategies are defined as ill-posed 

problems because they do not have a unique solution, that is, 

there is an unlimited number of paths linking the initial and 

destination postures. 

 

The traditional tools to solve the constrained path-planning 

problems are primary the combinational methods based on 

path geometry. Finding the shortest path under the curvature 

constraint was first brought out by Dubins [18], where he 

characterized such paths in two dimensions in the absence of 

obstacles. The well-known Dubins’ car refers to a vehicle 

with a minimum turning radius that only moves forward. 

Reeds and Shepp [19] then introduced its variant (still in the 

absence of obstacles),  the Reeds and Shepp’s car.  

 

 

6.1 Dubins Curves: 
 

Let a Dubins’ car-like robot pursue a continuously 

differentiable path from an initial position with an orientation 

to a terminal position with orientation, and the shortest path 

can always be expressed as a combination of no more than 

three motion primitives [8, 18, 20] 

 

1) An arc, followed by a line and then an arc. 

2) A sequence of three arcs of circles. 

3) A sub path of category 1 or 2. 

 

Assume that the S primitive drives the robot straight ahead, the 

L and R primitives turn as sharply as possible to the left and 

right, respectively. Using these symbols, each possible kind of 

shortest path can be designated as a sequence of three symbols 

that corresponds to the order in which the primitives are 

applied. There is no need to have two consecutive primitives 

of the same kind because they can be merged into one. Under 

this observation, fifteen types of optimal path are possible. 

Category 1 includes the paths of (RSR, RSL, LSR, and LSL). 

Category 2 contains (RLR, LRL), and those in Category 3 as 

(R, S, L, RS, RL, SR, SL, LR, LS). According to Fig.6, unlike 

the car-like robot, R, S, L segments are all performed by 

choosing different kinematic configurations of IMPASS based 

on metamorphic configurations. 

 

6.2 Reeds and Shepp’s  Curves: 
 

Compared to Dubins’ car, the only difference in comparison 

to the Dubins car is that moving backward is now allowed. 

Both Dubins’ car and Reeds and Shepp’s car have optimal 

paths that could be classified into known permutations of a 

sequence consisting of bang-bang controls-moving straight 

(forward or/and backward), turning fully right or fully left). 

 

6.3 Problem Formulation: 
 

We have explained earlier, for the purpose of this work, our 

algorithm computes the optimal trajectory by minimizing an 

objective function, which represents the shortest path to reach 

the destination. This shortest path is commonly used in path 

planning and robotics to find an optimal trajectory of the robot 

to the destination, given motion and geometry constraints due 

to the physical construction.   

 

The problem solved in this work can be summarized as 

follows: 

Problem Statement: 

Given the following: 

Initial posture (X0, Y0,𝜎0); destination posture (XN,YN,𝜎𝑁). 

The cost function: 

 𝑀𝑖𝑛 𝑓 ∆𝑖 =  ∆𝑖

𝑁

𝑖=1

+  
1

 ∆𝑖 − 𝑎 (𝑏 − ∆𝑖)

𝑁

𝑖=1

+  
1

 𝛩𝑘 − 𝛼 (𝛽 − 𝛩𝑘)

𝑁

𝑖=1

 

The constraint conditions: 

 𝑔1 ∆𝑖 , 𝛩𝑖 = 𝜎𝑁 − 𝜎0 − 𝛩𝑁 = 0 
 

 𝑔2 ∆𝑖 , 𝛩𝑖 = 𝑋𝑁 −𝑋0 +  ∆𝑖
𝑁
𝑖=1  𝐶𝑜𝑠 𝛩𝑖 =0 

 𝑔3 ∆𝑖 , 𝛩𝑖 = 𝑌𝑁 − 𝑌0 − ∆𝑖

𝑁

𝑖=1

 𝑆𝑖𝑛 𝛩𝑖 = 0 

 

 𝑔4 ∆𝑖 = ∆𝑖 − 𝑎 ≤ 0 
 

 𝑔5 ∆𝑖 = 𝑏 − ∆𝑖≤ 0 

 𝑔6 𝛩𝑖 = 𝛩𝑖 − 𝛼 ≤ 0 
 

 𝑔7 𝛩𝑖 = 𝛽 − 𝛩𝑖 ≤ 0 

     

  Find the shortest path between the initial and destination 

position with orientation. 

 

Currently, we consider only static case. We are looking for the 

optimal input sequence ∆𝑖  and 𝜃𝑖  of the IMPASS robot under 

given constraints described above to minimize the cost 

function. The variable ∆𝑖  represents the collection of input 

sequences ∆𝑖  for all steps with i Є [1, N], and so does 𝛩𝑖 . 

 

We can compactly represent the cost function and constraint 

function by writing the Lagrangian: 

 

𝛬 ∆𝑖 , 𝛩𝑖 , 𝜆𝑗  = 𝑓 ∆𝑖 +  𝜆𝑗  𝑔𝑗  ∆𝑖 , 𝜃𝑖 
3

𝑗=1
= 0                   (14) 

 

And the points we want are located where: 

∇Λ ∆i , Θi , 𝜆𝑗  =

∇ ∆𝑖
𝑁
𝑖=1 + ∇ 

1

 ∆𝑖−𝑎 (𝑏−∆𝑖)

𝑁

𝑖=1
+ ∇ 

1

 𝛩𝑘−𝛼 (𝛽−𝛩𝑘)

𝑁

𝑖=1
+

∇ 𝜆𝑗  𝑔𝑗  ∆𝑖 , 𝜃𝑖 
3

𝑗=1
= 0                                                                               

(15) 

Equation (15) can be rewritten as 
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 ∇ ∆𝑖
𝑁
𝑖=1 + ∇

1

b−a
 

1

 ∆𝑖−𝑎 

𝑁

𝑖=1
+

1

(𝑏−∆𝑖)
+ ∇

1

𝛽−𝛼
 

1

 𝛽−𝛩𝑘 

𝑁

𝑖=1
+

1

(𝛩𝑘−𝛼)
+ ∇ 𝜆𝑗  𝑔𝑗  ∆𝑖 , 𝜃𝑖 

3

𝑗=1
= 0                                               (16) 

 

We know that: 
𝜕𝛬

𝜕∆𝑁
= 1 + 𝜆2  𝐶𝑜𝑠 𝛩𝑁 − 𝜆3 𝑆𝑖𝑛 𝛩𝑁 +

1

𝑏 − 𝑎
[

1

 𝑏 − ∆𝑁 
2

−
1

 ∆𝑁 − 𝑎 2
] = 0 

 
𝜕𝛬

𝜕𝛩𝑁
= −𝜆1 − 𝜆2∆𝑁𝑆𝑖𝑛 𝛩𝑁 − 𝜆3∆𝑁  𝐶𝑜𝑠 𝛩𝑁 

+
1

𝛽 − 𝛼
 

1

 𝛽 − 𝛩𝑁 
2
−

1

 𝛩𝑁 − 𝛼 2
 

= 0                                                                                      (17) 
 

And we get: 

𝛩𝑁 = 𝜎𝑁 − 𝜎0 

 

 

when 𝑘 ≠ 𝑁: 
 

𝜕𝛬

𝜕∆𝑘
= 1 + 𝜆2 𝐶𝑜𝑠 𝛩𝑘 − 𝜆3 𝑆𝑖𝑛 𝛩𝑘 +

1

𝑏 − 𝑎
[

1

 𝑏 − ∆𝑘 
2

−
1

 ∆𝑘 − 𝑎 2
] = 0 

 
𝜕𝛬

𝜕𝛩𝑘
= −𝜆2∆𝑘𝑆𝑖𝑛 𝛩𝑘 − 𝜆3∆𝑘  𝐶𝑜𝑠 𝛩𝑘 

+
1

𝛽 − 𝛼
 

1

 𝛽 − 𝛩𝑘 
2
−

1

 𝛩𝑘 − 𝛼 2
 

= 0                                                                                   (18) 
 

So the solution would be: 

 

 

𝛩𝑘 = ±𝐴𝑟𝑐𝐶𝑜𝑠

 
 
 
 

−
𝜆2 +  𝜆3

2 −1 + 𝜆2
2 + 𝜆3

2 

𝜆2
2 + 𝜆3

2

 
 
 
 

 

∆𝑘=
𝜆1𝜆3

 𝜆3
2 −1 + 𝜆2

2 + 𝜆3
2 

    

 

Or 

 

𝛩𝑘 = ±𝐴𝑟𝑐𝐶𝑜𝑠

 
 
 
 −𝜆2 +  𝜆3

2 −1 + 𝜆2
2 + 𝜆3

2 

𝜆2
2 + 𝜆3

2

 
 
 
 

 

 

∆𝑘= −
𝜆1𝜆3

 𝜆3
2 −1 + 𝜆2

2 + 𝜆3
2 

 

 

 

when 𝑘 = 𝑁: 

 
𝜕𝛬

𝜕∆𝑘
= 1 + 𝜆2 𝐶𝑜𝑠 𝛩𝑁 − 𝜆3  𝑆𝑖𝑛 𝛩𝑁 = 0 

 
𝜕𝛬

𝜕𝛩𝑘
= −𝜆1 − 𝜆2∆𝑁𝑆𝑖𝑛 𝛩𝑁 − 𝜆3∆𝑁  𝐶𝑜𝑠 𝛩𝑁 

= 0                                       (19) 

 

Solution: 

𝛩𝑁 = ±𝐴𝑟𝑐𝐶𝑜𝑠

 
 
 
 

−
𝜆2 +  𝜆3

2 −1 + 𝜆2
2 + 𝜆3

2 

𝜆2
2 + 𝜆3

2

 
 
 
 

 

∆𝑁=
𝜆1𝜆3

 𝜆3
2 −1 + 𝜆2

2 + 𝜆3
2 

    

 

Or 

 

𝛩𝑁 = ±𝐴𝑟𝑐𝐶𝑜𝑠

 
 
 
 −𝜆2 +  𝜆3

2 −1 + 𝜆2
2 + 𝜆3

2 

𝜆2
2 + 𝜆3

2

 
 
 
 

 

 

∆𝑁= −
𝜆1𝜆3

 𝜆3
2 −1 + 𝜆2

2 + 𝜆3
2 

 

 

When 𝑘 = 𝑁 − 1: 

𝜕𝛬

𝜕∆𝑘
= 1 + 𝜆2  𝐶𝑜𝑠   𝜃𝑗

𝑁−1

𝑗=0

 − 𝜆3  𝑆𝑖𝑛   𝜃𝑗

𝑁−1

𝑗=0

 = 0 

 
𝜕𝛬

𝜕𝜃𝑘
= −𝜆1 − 𝜆2∆𝑁𝑆𝑖𝑛 𝛩𝑁 

− 𝜆3∆𝑁  𝐶𝑜𝑠 𝛩𝑁 −𝜆2∆𝑁−1𝑆𝑖𝑛 𝛩𝑁−1 
− 𝜆3∆𝑁−1𝐶𝑜𝑠 𝛩𝑁−1 
= −𝜆2∆𝑁−1𝑆𝑖𝑛 𝛩𝑁−1 −𝜆3∆𝑁−1𝐶𝑜𝑠 𝛩𝑁−1  

= 0                                                                           (20) 

 

Solution: 

𝛩𝑁−1 = ±𝐴𝑟𝑐𝐶𝑜𝑠  
−𝜆2

𝜆2
2 + 𝜆3

2 = 𝐴𝑟𝑐𝑆𝑖𝑛  
𝜆3

𝜆2
2 + 𝜆3

2  

 
∆𝑁−1= ∀ 

 
Or 

 

𝛩𝑁−1 = ±𝐴𝑟𝑐𝐶𝑜𝑠

 
 
 
 ±𝜆2 +  𝜆3

2 −1 + 𝜆2
2 + 𝜆3

2 

𝜆2
2 + 𝜆3

2

 
 
 
 

 

 
∆𝑁−1= 0 

 

When 𝑘 < 𝑁 − 1: same solution as above. 
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7 SIMULATION 
 

The algorithm used to compute shortest trajectories combines 

numerical methods based on MATLAB. The outline of the 

algorithm is presented as follows: 

Initialization 

Set initial posture (X0,Y0,𝜎0), destination posture (XN,YN,𝜎𝑁).  

Define constraint of the stride ∆𝑖  and the switching angle𝜃𝑖 . 

Main Loop 

If new posture is available, reiterate until the robot has 

reached their destination posture. 

 

As we did for the Lagrangian and its gradient, we provide the 

MATLAB function fmincon with the constraints of the robot 

as well as their gradient with respect to the control variable ∆𝑖  
and 𝜃𝑖 . Providing the gradient of the constraints to the function 

fmincon leads to a more accurate solution, than allowing 

fmincon to compute its own numerical approximation to the 

gradient of the constraints. Figure 11 shows the shortest path 

generated from the initial position (0, 0,
2𝜋

3
) to the destination 

position (25, 20,−
𝜋

3
). 

 
Fig. 12. Shortest Path Finding using Matlab  

 

8 CONCLUSIONS  
 

The shortest path finding strategies based on variable 

kinematics configurations are presented in this paper for a 

novel mobile robot that uses two actuated spoke wheels. The 

optimal planning strategies are proposed integrating the 

traditional constrained path planning tools and the unique 

kinematic configuration spaces of the mobile robot IMPASS. 

Due to this unique motion strategy, various kinematic 

topologies produce specific motion characteristics in the way 

of curvature variable steering. Instead of traditional 

differential drive or Ackerman steering locomotion, 

combinational path geometry methods, Dubins’ curve as well 

as Reeds and Shepp’s curve are applied to classify optimal 

paths into known permutations of sequences consisting of 

various kinematic configurations.  Numerical simulation is 

given in the end to verify the analytical solutions provided by 

using Lagrange Multiplier.  
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