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ABSTRACT 
A parallel locomotion mechanism can be defined as “a 

mechanism with parallel configuration that has discrete contact 

with respect to the ground which renders a platform the ability 

to move”. The actuated spoke wheel robot IMPASS (Intelligent 

Mobility Platform with Active Spoke System) presented in this 

paper serves as an example of such locomotion mechanisms. 

The current prototype of IMPASS has two actuated spoke 

wheels and one passive tail with its lower portion designed as 

convex surface. The robot is considered as a mechanism with 

variable topologies (MVTs) because of its metamorphic 

configuration. Closed-form solutions to the kinematics of the 

variable topologies are developed and verified with numerical 

simulations. The analytical expressions to these solutions allow 

themselves to be used directly in the real-time motion planning 

and monitoring of the robot. 

1. INTRODUCTION 
One focus of today’s robotics science and technology is to 

develop novel locomotion mechanisms that possess adequate 

mobility in various environments. With the implementation of 

appropriate locomotion schemes, mobile platforms can perform 

those tasks that are dirty, dull, dangerous or inaccessible to 

human beings, such as scientific exploration of remote areas, 

military surveillance, search and rescue missions and so on. The 

locomotion of traditional manned ground vehicles mainly 

includes wheels, tracks and hybrid combinations of both. 

However, the growing demand for lightweight mobile robots 

calls for innovative concepts on alternative locomotion.  

The scientific study on legged locomotion as an alternative 

to wheels and tracks began over a century ago, and a human-

controlled, four-legged walking machine with adjustable gaits 

was firstly built at General Electric in mid-1960s, as was 

introduced in Ref. [1]. Through the viewpoint of modern 

kinematics, wheeled or tracked vehicles are inherently different 

from legged walking machines in that the former always 

maintain continuous contact with the ground while the latter 

have discrete contact with the ground.  Additionally, in any of 

its stable configurations, the body or platform of the walking 

machine is always connected to the ground through multiple in-

parallel branches. As the legs or branches are lifted above and 

put down, the body is moved from place to place. Meanwhile, 

as the machine walks, the location and geometry of the virtual 

base formed by the contact feet on the ground change as well. 

Based on the discussion above, a class of alternative 

locomotion mechanisms can be proposed which distinguish 

themselves by their kinematically parallel configurations.  A 

parallel locomotion mechanism can be defined as “a 

mechanism with parallel configuration that has discrete contact 

with respect to the ground which renders a platform the ability 

to move” [2].  Another important and necessary characteristic 

of a parallel locomotion mechanism is its ability to change 

topologies. Usually, a parallel locomotion mechanism has more 

than one topology; when a branch is lifted above the ground, the 

topology of the mechanism changes correspondingly, as well as 

the geometry of its virtual base on the ground.  For such 

locomotion mechanisms, a fundamental research on their 

kinematics is quite necessary, as it will lay the foundation for 

other studies such as design optimization, dynamics modeling, 

nonlinear control, motion planning and so on. 
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Figure 1 The relationship of Parallel Locomotion 

Mechanism (PLM) with Related Disciplines 

As shown in Figure 1, Parallel Locomotion Mechanism 

(PLM) is a new interdisciplinary area which requires 

background knowledge in mobile robotics, parallel 

manipulators, and mechanisms with variable topologies. Two 

mobile robots with such locomotion mechanisms are currently 

under development at RoMeLa: Robotics and Mechanisms 

Laboratory in Virginia Tech.  Previous research works can be 

found in Refs. [3-8]. The first robot STriDER (Self-excited 

Tripedal Dynamic Experimental Robot) is a three-legged robot 

that utilizes its built-in passive dynamics for walking. The 

kinematics in its triple stance phase has been investigated in 

Refs. [3]. The second robot IMPASS (Intelligent Mobility 

Platform with Active Spoke System) is an actuated spoke 

wheeled robot that has various topologies with respect to the 

ground. The uniqueness of this type of spoke wheels is that each 

spoke can be actuated to stretch in or out independently.  

The IMPASS robot serves in this paper mainly as an 

example to the kinematics study on parallel locomotion 

mechanisms. The content of the paper is organized as: the 

background of the IMPASS robot with two spoke wheels and 

one tail is introduced in Section 2; followed by the forward and 

inverse kinematics analysis in Section 3. In Section 4, examples 

based on simulations are presented to verify the closed-form 

solutions obtained. Finally, conclusions are summarized and 

future research is briefly discussed in Section 5.  

2. BACKGROUND 
Leg-wheel hybrid robots have been drawing more attention 

since they have the advantages of both legs and wheels. Legged 

locomotion is more adaptable to a wide range of unstructured 

grounds but the complicated mechanism of the legs is very 

difficult to implement.  On the other hand, wheeled 

locomotion is fast and efficient but it tends to be limited to 

relatively smooth terrain. Therefore, in order to create a walking 

machine that combines the benefits of both locomotion 

schemes, spoke wheels or similar mechanisms could be good 

candidates.  

Previous mobile platforms that utilize compliant spoke 

wheels mainly included RHex [9] and Whegs
TM 

[10]. RHex was 

a compliant-legged hexapod with a simple clock-driven open-

loop tripod gait. It was different from other mobile robots in 

that each of its legs rotated in full circles acting as a single 

spoke wheel. The Whegs
TM

 series of robots was the another 

derivation of the spoke wheel concept that utilized compliant 

tri-spoke configuration in each wheel. 

2.1 Intelligent Mobility Platform with Active Spoke 

System. As a novel concept for creating a series of hybrid 

mobile robots with robust mobility, the architecture of a rimless 

wheel with multiple extensible spokes passing through the 

center was proposed as early as in Ref. [11]. The IMPASS robot 

presented in this paper was conceived independently [4, 5], but 

is also based on the similar concept. Compared with the 

aforementioned RHex and Whegs
TM

 robots, the major 

difference of the IMPASS lies on the mechanism of its spoke 

wheels (six spokes per wheel unit, compared to three for 

Whegs
TM

 and only one for RHex), and its ability to stretch each 

spoke in or out intelligently. The latest IMPASS prototype 

demonstrated in Figure 2 has two actuated spoke wheels and 

one passive tail. The spokes are made of carbon fibers and set 

60 degrees from each other. The body is covered with a carbon 

fiber shell.  The shell has a tail, with its lower portion designed 

as a convex surface. As the robot walks on various terrains, 

climbs up steps and so on, the tail together with the spokes that 

contact the ground can provide a support region to maintain its 

stability.   

 

 

 

 

 

 

 

 

 

Figure 2 The prototype of IMPASS 

As the IMPASS moves on smooth surfaces, its body is 

always connected to the ground through multiple actuated 

spokes. Therefore, by treating the ground as the base and the 

spokes as the limbs, this mobile robot can be considered as a 

parallel locomotion mechanism, as well as a mechanism with 

variable topologies (MVTs). Each of its topological structures is 

characterized by the contact scheme of the spokes. The variable 

mobility, i.e. the metamorphic degrees of freedom (d.o.f.) 

possessed by the robot’s body, was identified in Ref. [6] for all 

cases of its topologies.  As a follow-up, Ref. [7] revealed that 

the ground motions of the IMPASS, such as straight-line 

walking, steering and other combinations, could be uniformly 
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interpreted as a series of topological transformations. This 

paper is intended to investigate the forward and inverse 

kinematics for such topologies in order to further understand 

their characteristics. 

2.2 Kinematic Configuration. For convenience, a simple 

and straightforward nomenclature is composed to describe the 

contact case in each topology [6]. This nomenclature generally 

follows the format of “n1-n2: parallel & equal / parallel & 

unequal / skew”. The term “n1-n2” is used to represent the 

numbers of the contacting spokes in the left and right wheels 

respectively, with the term “parallel & equal /parallel & 

unequal” indicating whether or not the geometrically parallel 

contacting spokes in this case are of equal length. The term 

“skew” is used only when the left contacting spoke is skew to 

the right contacting spoke. 

As an example, the characteristic geometry of the IMPASS 

prototype in Figure 2 is extracted, and represented with the 

kinematic model shown in Figure 3. In this case, two spokes 

from the left and right wheel respectively and the tail are 

contacting the smooth ground. This case can be addressed as 

“1-1: parallel & equal” because the left contacting spoke is 

parallel and equal to the right one. Note that the contacting and 

un-contacting spokes are represented with solid and transparent 

cylinders respectively in this figure.  

In the case shown in Figure 3, the two spoke wheels are 

connected with an axle. So the actuation of this robot is the 

rotation of the spoke wheels about the axle in the direction 

indicated by the double arrow in this figure, and the translations 

of the contacting spokes through the hub of the wheel. The un-

contacting spokes can also stretch in or out locally, but their 

displacements do not affect the configuration of the robot in its 

current topology, unless they touch the ground thus changing its 

topology.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 Kinematic model of IMPASS with two spokes and the 

tail in contact with the smooth ground (1-1: parallel & equal) 

The geometry of the body and tail is simplified, and 

represented with a rectangle plane connecting to a convex 

surface through a rigid link. At present, the convex surface of 

the tail is designed as part of a spherical surface, but other types 

of convex surfaces such as hyperboloid of two sheets, 

paraboloid etc., might be considered in the future. The body and 

tail as a whole is attached to the axle that actuates the two spoke 

wheels. Through moderate modifications, this model can also 

be used to demonstrate other contact cases in Ref. [6].  

3. FORWARD AND INVERSE KINEMATICS ANALYSIS 
As the robot walks on various terrains, its tail passively 

touches the ground. Therefore, at any instant, there exist at least 

three contact points between the IMPASS and the ground (two 

or more come from the contacting spokes, and one or more 

from the tail). For the various contact cases, the objective of the 

forward and inverse kinematics is to investigate the geometric 

relationships of the body’s position/orientation and the joint 

variables. In this paper, the scope of the kinematics analysis is 

confined to the smooth ground. A few assumptions are made 

ahead, which include: 

1. The IMPASS robot consists of rigid links, such as the 

spokes and the axle. Especially, the body and tail as a 

whole is considered as one rigid link; 

2. The two spoke wheels rotate in the same phase, so for each 

spoke in the left wheel, there is always a parallel spoke in 

the right wheel; 

3. When a spoke touches the ground, the generated contact 

point is kept stationary, i.e. no slip or bounce occurs at the 

contact tips as the contacting spokes rotate or translate. 

Each contacting spoke is modeled as a limb consisting of a 

Spherical-Prismatic (SP) dyad; 

4. The tail’s passive touching with the smooth ground 

generates one contact point only, since the lower portion of 

the tail is a partial spherical surface. This contact point is 

treated as the tangential point between the spherical surface 

and the ground plane. Because the tail and the ground are 

both rigid and contacting each other at one point, a surface 

contact pair is thus generated [12]. As illustrated in Figure 

4, the two contacting surfaces are free to roll and slide with 

respect to one another as long as the contact point is 

maintained, so this pair is a higher pair with five d.o.f  
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Figure 4 Surface contact pair 

Please note that, the following analysis mainly focuses on 

the “1-1” contact cases. Other contact cases in Ref. [6] have 

only one d.o.f. or no d.o.f.. Compared with the “1-1” cases, 

their kinematics is relatively simple. 

3.1 Forward Kinematics. Forward kinematics analysis 

aims to calculate the position and orientation of the robot’s 

body with given joint displacements. Among all cases of its 

topologies, the “1-1” cases with two spokes and the tail in 

contact with the ground possess two d.o.f and contribute the 

most to its locomotion [7]. Considering the topology of the 

IMPASS robot shown in Figure 3, the joint variables that can be 

specified are the angular displacement of the two spoke wheels 

and the linear displacement of the two contacting spokes. Since 

the rotation of the two wheels is in phase and the translations of 

the two spokes are dependent on each other, there are two d.o.f 

in this topology.  

Given the presumption that three non-collinear contact 

points exist (two from the contacting spokes and one from the 

tangency of the tail’s lower surface with the smooth ground), the 

forward kinematics of the IMPASS robot in this contact case 

can be formulated through the following procedures. 

First, as shown in Figure 3, two coordinate systems are 

established with {xo, yo, zo} fixed on the ground and {xb, yb, zb} 

attached to the robot’s body. The origin O of {xo, yo, zo} is 

chosen at the contact point between the left spoke and the 

ground, with xo axis pointing to the right contact point and zo 

axis normal to the ground. The origin B of {xb, yb, zb} is set at 

the midpoint of the axle, with xb axis pointing to the right wheel 

center, also the direction of the spoke wheels’ rotation, and yb 

axis lying in the rectangle plane and pointing to the front of the 

body.   

Secondly, assume the body coordinate system {xb, yb, zb} is 

positioned at the global origin with zero orientation, then with 

given joint displacements, the position vectors of the contact 

points of the two spokes (P1 and P2) with respect to the body 

frame can be determined using homogenous coordinates and 

transformation matrices as follows:  

 1 1

1 1
xR 

   
   

   

P p  (1) 

       and  

 2 2

1 1
xR 

   
   

   

P p  (2) 

      where  

 

1 0 0 0

0 cos sin 0

0 sin cos 0

0 0 0 1

xR
 


 

 
 
 
 
 
 

 
(3) 

 

 

T

1 1

T

2 2

/ 2 0

/ 2 0

a

a

l d

l d

 

  

p

p

 

In Eqs.(1-3), la is the length of the axle; θ is the angular 

displacement of the two spoke wheels; d1 and d2 are the linear 

displacements of the left and right contacting spokes 

respectively, measured from the centers of the wheels to the 

contact points.  d1 and d2 must comply with the following 

constraint: 

1 2d d d    (4) 

where Δd is a non-zero constant for “1-1: parallel & unequal” 

case and zero for “1-1: parallel & equal” case. It is usually 

determined by the initial condition of the contact cases. The 

constraint of Eq.(4) is to ensure that the distance between the 

two spoke contact points is constant in its current topology, 

such that slip or bounce does not occur at the spoke tips. 

As for the “1-1: skew” case in which the two contacting 

spokes are skew to each other with the twisting angle of 60 

degrees, Eq.(2) needs to be modified as: 

 2 2
/ 3

1 1
xR  

   
    

   

P p  (2)* 

and d1, d2 should follow the quadratic constraint as follows: 

2 2 2 2

1 1 2 2 ad d d d e l     (4)* 

where e is the distance between the two contact points, la is 

again the length of the axle and both of them are constants. The 

detailed derivation of Eq.(4)* and discussions on the skew 

contact case  can be found in Ref. [8].  

Thirdly, with P1 and P2 calculated from Eqs.(1-3) or 

Eq.(1),(2)* and (3), the position vector of P3 with respect to the 

body coordinates {xb, yb, zb} can now be determined by finding 

the tangential point between the spherical surface of the tail and 

the ground plane that contains points P1 and P2. Assuming the 

function of the surface in the body coordinate system is F(x, y, 

z) = 0, then the equations to obtain P3 can be formulated as 

follows: 

   
 

   
 

3 3 3

3 3 3 1 3 3 3 3 1 3

3 3 3 1 3

3 3 3 2 3 3 3 3 2 3

3 3 3 2 3

( , , ) 0

( , , ) ( , , )

( , , ) 0

( , , ) ( , , )

( , , ) 0

x y z

x x y z x x y x y z y y

z x y z z z

x x y z x x y x y z y y

z x y z z z

F P P P

F P P P P P F P P P P P

F P P P P P

F P P P P P F P P P P P

F P P P P P

 




   


  


    

   

 

(5.1) 

 

(5.2) 

  

 

(5.3) 

where Pix, Piy, Piz are the three components of Pi, with i = 1,2,3 

and Pi = [Pix, Piy, Piz]
T
. F’x, F’y and F’z in Eq.(5.2) and Eq.(5.3) 

are the partial derivatives of F(x, y, z) with respect to x, y, and z 

respectively. Eqs.(5.1-5.3) all have definite geometric 
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meanings. Eq.(5.1) ensures that P3 is on the surface, while 

Eq.(5.2) and Eq.(5.3) guarantee that the tangential plane i.e. 

ground plane, at P3 also passes P1 and P2. With P1 and P2 

known, Eqs.(5.1-5.3) now become an equation system with 

three unknowns P3x, P3y, P3z, thus P3 is solvable.  

Finally, with P1, P2 and P3 obtained, the configuration of 

the ground plane relative to the body coordinate system is 

determined definitely. The three orthogonal unit vectors 

describing the orientation of the ground can be found as: 

1 2 1 2

2 3 2 3

' ( ) /

' ' ( ) / ' ( )

' ' '

o

o o o

o o o

  

    

 

x P P P P

z x P P x P P

y z x

 
(6) 

The ground coordinate system {xo, yo, zo} has its origin at point 

P2, so the homogeneous transformation matrix from the ground 

frame to the body frame is established as: 

2' ' '

0 0 0 1

o o oO

B

 
  
 

x y z P
H  (7) 

By taking the inverse of the matrix O

BH , the configuration of the 

body attached frame {xb, yb, zb} with respect to the ground 

fixed frame {xo, yo, zo} is obtained as: 

     1
2' ' ' ' ' '

1

0 0 0 1

T T

B O o o o o o o
O B

b b b

  
   

  

 
  
 

x y z x y z P
H H

0

x y z B

 
(8) 

Thus, the forward kinematics of IMPASS with two spokes 

and the tail in contact with the ground is formulated completely. 

With given joint displacements, i.e. θ, d1 and d2, the position 

and orientation of IMPASS’ body with respect to the ground are 

obtained and represented with the homogeneous transformation 

matrix B

OH  in closed-forms. Theoretically, it is possible that 

the forward kinematics has multiple solutions. Inspecting the 

kinematic model of the IMPASS robot in Figure 3, the multiple 

solutions are due to the existence of multiple tangential points 

between the spherical surface and the ground plane, i.e. the 

whole spherical surface at the tail can have two tangential 

points with the plane that passes line P1P2, resulting in two 

forward kinematics solutions. However, the additional solution 

can be easily eliminated because only the lower portion of the 

spherical surface is real and the tangential point at the upper 

portion does not exist in the physical model and thus unique 

solution will be derived.   

The procedures discussed above not only solve the forward 

kinematics in the topology of the robot that has two spokes and 

the tail contacting the ground, but also can be expanded to 

include the configuration transformations of the robot when 

taking multiple steps.  Technically, touch sensors can be 

mounted at the tips of all the spokes. Within the current 

topology of the robot, if an additional spoke touches the ground 

and the topology is about to change, then the new contact point 

is detected by the touch sensor, its position with respect to the 

body frame is calculated, and a new ground coordinate system 

with known configuration is established for the next topology. 

Repeating Eqs.(1-8), the information about the body’s new 

configuration can be updated based on new joint displacements. 

3.2 Inverse Kinematics. Inverse kinematics is the reverse 

development to forward kinematics in which the joint 

displacements are calculated based on the specified position and 

orientation of the robot’s body. As discussed in Section 3.1, the 

body’s configuration is contained in matrix B

OH  with xb, yb and 

zb representing the orientation and B the position. The complete 

form of B

OH  is presented as follows:   

10 0 0

bx bx bx x

by by by yB

O

bz bz bz z

x y z B

x y z B

x y z B

 
 
 
 
 
  

H
 

(9) 

which is a 4 by 4 matrix with 16 components.  

A rigid free body in 3D space has 6 d.o.f totally. However, 

the robot’s body in “1-1: parallel” cases only has 2 d.o.f 

because of the kinematic constraints. Therefore, the 

specification of the body’s configuration must be selective and 

not all 6 d.o.f can be specified arbitrarily. To illustrate this, 

assume B

OH takes the following numerical form: 

11 12 13 14

2321 22 24

31 32 33 34

0 0 0 1

B

O

h h h h

hh h h

h h h h

 
 
 
 
 
 

H
 

(10) 

Then, among the 12 components in Eq.(9), only 2 can be 

chosen as inputs.  

The selection of the body’s position and orientation is 

based on the actual requirements for the robot. It is not 

necessary to investigate all possible combinations of the 2 

components out of the 12 candidates. Since the IMPASS is 

expected to walk and steer on the ground, any two components 

from its position vector B or from the direction vector yb can be 

utilized as the input variables.  The advantage of these 

combinations is that, the two components from B can be used to 

control the projected position of the robot’s body on xoyo plane 

(ground plane), yozo plane or xozo plane. Additionally, the two 

components from yb can be used to control the heading angle of 

the robot projected to the ground or the pitch angle projected to 

yozo plane.  

Assume that h14 and h24 in Eq.(10) are chosen as the input 

variables, which correspond to Bx and By in Eq.(9). Then two 

equations are established as: 

14

24

x

y

B h

B h






 (11.1) 

(11.2) 
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Eqs.(11.1-11.2), Eqs.(5.1-5.3), and Eq.(4) or Eq.(4)* for “1-1: 

parallel” or “1-1: skew”, will associatively generate a system of 

6 equations with respect to 6 unknowns: θ, d1, d2, P3x, P3y and 

P3z. With θ, d1 and d2 obtained, the inverse kinematics problem 

is solved. Note that other combinations of hij can also be used to 

solve for θ, d1, d2 and the procedures are the same.  

However, the computation efficiency of the approach above 

is not high enough in actual applications. The solutions can be 

obtained, but with the cost of large amount of time. This is 

because the number of the unknowns is relatively high (totally 

6) and the symbolic form of each component in B

OH  is quite 

complicated, which was obtained after taking the analytical 

inverse of O

BH  in Eq.(8). If the number of the unknowns can be 

reduced, then the computation efficiency of this approach will 

be greatly improved.  

Revisit the results in Ref. [8]. Both the “1-1: parallel” and 

the “1-1: skew” contact cases have two continuous and 

controllable d.o.f.. In such cases, it can be easily observed that 

as the two spoke wheels rotate about the axle, the body of the 

IMPASS robot also rotate about the pivot line on the ground. 

Therefore, the rotational angle of the robot about the pivot line 

is used in the following analysis to simplify the formulation of 

inverse kinematics. 

“1-1: parallel” cases: Ignoring the body of the robot in 

such contact cases, the axle and two parallel contacting spokes 

form a two-branch Spherical-Prismatic parallel mechanism with 

respect to the ground. As shown in Figure 5(a), the two d.o.f. 

are the rotation of the axle about the pivoting line P1P2 on the 

ground and the translation of axle along the two contacting 

spokes. With the two d.o.f. identified, this 2-SP parallel 

mechanism can be modeled as a virtual serial manipulator. 

Since the axle and two contacting spokes lie in the same plane, 

the first joint of the virtual serial manipulator is defined as the 

rotation of the plane about P1P2 and the second joint is defined 

as the translation of the axle along the spokes within the plane.  

The two joint variables are denoted with Θ1 and D2 in 

Figure 5(a) and the coordinate frames are attached to the virtual 

joints as demonstrated in Figure 5(b). Again, the fixed 

coordinate coordinates {x0, y0, z0} on the ground are established 

following the convention in Sec.3.1, with its origin at P2, x0 axis 

pointing to P1, and z0 perpendicular to the ground. 
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Figure 5 Virtual serial manipulator model for the “1-1: parallel” 

contact case 

Inspecting Figure 5, the transformation from the ground 

coordinate {x0, y0, z0} to the body coordinate {xb, yb, zb} is 

achieved through the following steps. Firstly, z0 axis is rotated 

by Θ1 about the x0 axis, i.e. the pivoting line P1P2, such that it is 

coplanar with the axle and the two contacting spokes. Then, the 

current origin is translated along the x0 axis by a linear 

displacement of ld/2, for which ld is the distance between the 

two contact points P1 and P2. The current z0 axis is rotated by β 

about the current y0 axis to be collinear with the z1 axis. The 

angle β is determined by the length of the axle and the 

difference of the two unequal contacting spokes. As for the case 

of two equal contacting spokes, β is taken as zero. Translating 

along the z1 axis for a displacement of D2, x1 is now collinear 

with x2 and xb, and the origin is at the central point of the axle. 

Finally, rotating z2 axis about the x2 axis by γ, the body 

coordinate frame is well established, which exactly matches 

with the setup in the last section. The complete transformation 

process can be described by the following equation.  

         1 2/ 2B

O x x d y z xR T l R T D R  H  (12) 

In this equation, Θ1 and D2 are the two joint variables of 

the 2 d.o.f. virtual serial manipulator model. ld and β are 

constants predetermined by the lengths of the axle and the 

contacting spokes, for which: 
2 2

d al l d   and  arctan / ad l     

γ is determined by the tangential constraint of the spherical 

surface at the tail with the ground.  Based on Eq.(12), the 

complete form of 
B

OH  matrix is presented as the Eq.(A) in the 

Appendix of this paper.  

The alternative form of 
B

OH  based on the virtual model of 

a serial manipulator is very compact and straightforward 

compared with that derived from taking the inverse of 
O

BH  as 

shown in Eq.(8). Particularly, when β is taken as zero for the “1-
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1: parallel & equal” case, Eq.(12) takes an even simpler form 

as: 

   
   

1 1 2 1

1 1 2 1

1 0 / 2

0 cos

0 sin cos

0

c

sin sin

os

0 0 0 1

d

B

O

l

D

D

 

 

 
 

     
 
     

 





H
 

(13) 

Eq.(A) and Eq.(13) not only can improve the computation 

efficiency of the inverse kinematics for the “1-1: parallel” cases 

but also provide more insights into the kinematic configuration 

when assigning the desired control variables. 

“1-1: skew” cases: If the two contacting spokes are skew 

to each other, another type of two-branch Spherical-Prismatic 

parallel mechanism is thus generated, as is shown in Figure 6. 

This parallel mechanism also possesses two d.o.f. based on the 

mobility analysis in Ref. [6]. The first d.o.f. is similar to the “1-

1: parallel” contact case; the body is capable of rotating about 

the pivoting line P1P2 on the ground. The second d.o.f. is caused 

by changing the lengths of the contacting spokes following the 

constraint in Eq.(4). It is also a rotational motion about a virtual 

axis determined by e and la.  

The first d.o.f. is denoted with joint variable Θ1. To make 

the geometric presentation more straightforward, two auxiliary 

line segments are created in Figure 6(a). As shown in this 

figure, H1 and H2 are the centers of the left and right spoke 

wheels respectively. Auxiliary line segment H1P3 is parallel and 

equal to the right contacting spoke and H2P4 is parallel and 

equal to the left contacting spoke. Thus, a rectangle P1P3P2P4 is 

generated with the side lengths la and c, for which 
222

alec  . As the mechanism rotates about the pivoting 

line on the ground, rectangle P1P3P2P4 also rotates about P1P2 

correspondingly. Therefore, joint variable Θ1 can be described 

as the rotational angle between plane P1P3P2P4 and the ground. 

The second d.o.f. is denoted with Θ2 which occurs within the 

polyhedron P1H1P3-P2H2P4. For this d.o.f., the axle rotates 

about a virtual axis as was discussed in Ref. [8]. The direction 

of this virtual axis is parallel to the axle, as indicated in Figure 

6(a).  

With the two d.o.f. identified and denoted with the arrows 

in Figure 6(a), a virtual two-link serial manipulator model for 

this parallel mechanism can be established. Correspondingly, 

the coordinate frames are attached to the virtual joints as 

demonstrated in Figure 6(b). Again, the fixed coordinates {x0, 

y0, z0} on the ground are established following the convention 

in Section 3.1, with its origin at P2, x0 axis pointing to P1, and z0 

perpendicular to the ground. 
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Figure 6 Virtual serial manipulator model for the “1-1: skew” 

contact case 

By inspection, ground coordinate frame {x0, y0, z0} is 

transformed to the body coordinate frame {xb, yb, zb} through 

the following steps. First, the origin of {x0, y0, z0}is translated 

along the x0 axis by a distance of e/2. Followed by a rotation of 

Θ1 about x0, a rotation of αtw about the current z0 and a 

translation of a about the same z0 axis, frame {x0, y0, z0} is then 

coincident with {x1, y1, z1}. Rotating about the x1 by Θ2 and 

translating about the current z1 for a distance r, {x1, y1, z1} is 

transformed to {x2, y2, z2}. The calculation of a and r has been 

discussed in Ref. [8] and αtw is determined by e and la as 

 2 2

tw arcsin /ae l e   
 

. Finally, similar to the “1-1: parallel” 

cases, rotating about the x2 axis by γ, the body frame {xb, yb, 

zb}is achieved. The following matrix equation can be used to 

describe the complete transformation.  

 

P3 

P3 
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             1 tw 1/ 2B

O x x z z x z xT e R R T a R T r R   H  (14) 

The closed-form of each component in this matrix is presented 

in  Eq.(B) in the Appendix. 

Determination of γ: For both the “1-1: parallel” case and 

“1-1: skew” case, γ can be determined using the tangential 

constraints of the spherical surface at the tail and the ground 

plane.  Assume the center of the sphere is located at [Ca, Cb, 

Cc] in the body coordinate system {xb, yb, zb} and the radius is 

R, then the equation of the spherical surface can be written as: 

     
2 2 2 2

b a b b b cx C y C z C R        

Represent the global coordinates of the spherical center with 

[Ca,G, Cb,G, Cc,G], then  [Ca,G, Cb,G, Cc,G] can be obtained from: 

 

,

,

,

11

a G a

b G bB

O

cc G

C C

C C

CC

   
   
   
   
   
    

H
 

 

The equation of the spherical surface can be rewritten in ground 

coordinate frame {x0, y0, z0} as: 

     
2 2 2 2

, , ,a G b G c Gx C y C z C R       (15) 

Assume the tangential point of the spherical surface and the 

ground plane is [xt, yt, zt], then the equation of the tangential 

plane is: 

        , , , 0t a G t t b G t t c G tx C x x y C y y z C z z           

Consider the fact that the tangential point [xt, yt, zt] also lies on 

the ground plane of z = 0, zt = 0 can be inferred and the 

equation above is further simplified as: 

     , , , 0t a G t t b G t c Gx C x x y C y y C z        (16) 

Compare Eq.(16) with the equation of the ground plane z = 0, 

two equations can be simply derived as: 

,

,

0

0

t a G

t b G

x C

y C

 


 

 (17) 

Moreover, [xt, yt, zt] with zt = 0 has to satisfy Eq.(15), such that 

   
2 2 2 2

, , ,t a G t b G c Gx C y C C R      (18) 

Considering Eq.(17) and (18) associatively, the equation to 

solve for γ is obtained straightforwardly as: 

,c GC R     (19) 

with + R for the sphere contacts the ground plane above and  –

R for the sphere below which could be discard.  

As a summary, the closed-form matrix expressions of 

Eq.(12) and (14) are based on the two virtual serial manipulator 

models. Compared with Eq.(8), both the complexity of the 

symbolic form of each component and the number of unknown 

variables are greatly reduced, thus improving the computation 

efficiency and providing more insights when solving the inverse 

kinematics problems. 

4. NUMERICAL EXAMPLES  
Examples based on numerical simulations are presented in this 

section as a validation to the development in Section 3. The 

equations are solved using the embedded algorithm in 

Mathematica and the solutions are plotted.  

The basic geometric parameters of the IMPASS model are 

listed in the following table.  

Table 1 Basic geometric parameters of IMPASS 

Length of the axle la  16 (in) 

Center of the spherical surface with 

respect to {xb, yb, zb} 
[0, -35, 14] (in) 

Radius of the spherical surface 21 (in) 

Total length of a spoke 23.5 (in) 

“1-1: parallel” case: The initial joint displacements are 

chosen as: θ = 0.5 (rad), right spoke length d1 = 14 (in) and left 

spoke length d2 = 10 (in). Applying Eqs.(1-5), within decent 

amount of time, the solutions to the tangential and contact point 

P3 are obtained as : 

[-4.709,-37.004,-6.367] and [3.637,-15.124,19.720] 

The second solution can be eliminated because it corresponds to 

a tangential point at the upper portion of the spherical surface. 

Using Eqs.(6-8), the matrix B

OH is determined now as: 

0.970 -0.116 -0.213 5.336

0.093 0.989 -0.119 4.438

0.224 0.095 0.970 10.762

0 0 0 1

B

O

 
 
 
 
 
 

H
 

(20) 

Using the values contained in Eq.(20), the configuration of the  

IMPASS model is plotted in Figure 7. Note that in this figure, 

the partial spherical surface at IMPASS’ tail is represented with 

a complete transparent sphere. This is just to illustrate the 

reason why the additional solution can be eliminated.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7 Forward kinematics solution (1-1: parallel & unequal) 

x0 y0 
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zb 
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Since B

OH  in Eq.(12) becomes a matrix containing values 

calculated based on the forward kinematics in Section 3.1, its 

components can now be utilized to validate the formulation of 

inverse kinematics in Section 3.2.   

Assume Bx and By in Eq.(9) are chosen as the inputs, then 

two equations based on Eq.(A) can be established as: 

2

2 1

/ 2 sin

cos 4.43

5.336

sin 8

dl D

D







  





 (21.1) 

(21.2) 

Then, D2 is solved firstly as D2 = 12; and from Eq.(21.2), Θ1 is 

determined as Θ1 = -0.391. The term of sinΘ1 may allow for 

multiple solutions. However, since the geometric interpretation 

of Θ1 is the angle between the plane of the ground and the plane 

containing the axle and contacting spokes, an angle greater than 

π/2 or smaller than -π/2 is unlikely to happen in reality. A 

reasonable range for Θ1 could be [-π/2, π/2], and the solutions 

out of this range can be discarded.  

With Θ1 = -0.391 and D2 = 12, Eq.(19) can now be used to 

solve for γ and the two solutions are listed as: 

1

2

2.077

0.5





 



 (22.1) 

(22.2) 

The first solution corresponds to the case in which the upper 

portion of the spherical surface contacts the ground, while the 

second solution corresponds to the lower portion. Similar to Θ1, 

a reason range for γ could be [-π/2, π/2], then the unfeasible 

solution 
1 2.077   can be discarded and only one feasible 

solution is achieved. With Θ1, D2 and γ obtained, the actual 

joint displacements are then determined from the following 

equations: 

1 2

2 2

/ 2

/ 2

d D d

d D d

 

  

 

 
(23) 

And the results are Θ1 = 0.5, d1 = 14 and d2 = 10, which exactly 

match with the initial setup.  

“1-1: skew” Case: The basic geometric parameters of the 

IMPASS model still follow Table 1 and the initial setup of the 

actual joint displacements is: θ = 0.1 (rad), d1 = 10 (in) and d2 = 

10 (in). The forward kinematics is solved following the 

procedures in Section 3.1 and the current configuration for this 

case is plotted in Figure 8. 

Correspondingly, the configuration matrix B

OH for the 

robot’s body in Figure 8 is:  

0.848 -0.483 -0.218 9.434

0.467 0.876 -0.126 -4.109

0.251 0.005 0.968 7.623

0 0 0 1

B

O

 
 
 
 
 
 

H
 

(24) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8 Forward kinematics solution (1-1:skew) 

Assume yby and ybz in Eq.(9) are chosen as the inputs, then 

the equations system based on Eq.(B) and (19) can be 

established as: 

   

   

     

    

tw 1 2 1 2

tw 1 2 1 2

, 1 2 1 2 2 2

1 tw tw 2 2 2

cos cos cos sin sin 0.876

cos sin cos cos sin 0.005

, , cos cos cos sin

sin sin cos cos sin sin

c G c b

a b c

C a r C C

C C r C R

  

  

  

   

        


       


             


             

 (25.1) 

(25.2) 

(25.3) 

Replace Θ2 + γ with Θ3 such that the Eq.(25.2) and (25.3) can 

associatively solve for two unknowns Θ1 and Θ3 firstly. And the 

solutions are as follows: 

1,1

3,1

1,2

3,2

1,3

3,3

1,4

3,4

2.659

2.718

2.647

2.717

0.494

0.424

0.483

0.423

 

  

  

 

 

  

  

 

 

(26.1) 

 

(26.2) 

 

(26.3) 

 

(26.4) 

 

The solutions in Eq.(26.1) and (26.2) can be eliminated because 

they are out of the range of [-π/2, π/2]. Using Eq.(25.3) and the 

results in Eq.(26.3) and (26.4), Θ2 is determined as: 

2,1

2,2

2,3

2,4

0.857

0

0.865

0.028

  

 

 

  

 
(27) 

With Θ1, Θ 2 and γ solved, the 12 components in matrix 
B

OH  

can be completely determined. Thus, the actual joint variables 

of the “1-1: skew” case d1, d2 and θ, can be calculated as: 

x0 
y0 

z0 

xb yb 

zb 
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 

1 1

2 2 2

1VectorAngle , / 2b

d

d

 

 

 

 

1

1

P H

P H

y P H

 
(28) 

Therefore, the results based on values in Eq.(26.3,26.4) and 

(27) are: 

1,1

2,1

1

1,2

2,2

2

1,3

2,3

3

1,4

2,4

4

11.495

6.695

0.529

10

10

0.1

6.661

11.499

0.515

10.079

9.919

0.961

d

d

d

d

d

d

d

d









































 

(29.1) 

 

 

(29.2) 

 

 

(29.3) 

 

 

(29.4) 

 

By inspection, all four solutions are feasible and the second 

solution in Eq.(29.2) matches with the initial setup.  

6. CONCLUSIONS AND FUTURE RESEARCH 
This paper presents the concept of parallel locomotion 

mechanisms, and utilizes the IMPASS robot as an example to 

discuss the forward and inverse kinematics analysis for such 

mechanisms. The cases of the IMPASS robot with two spokes 

and the tail contacting the ground are sufficiently addressed, 

while other contacts cases can be handled through the similar 

procedures. The formulation of the closed-form solutions is 

validated with numerical simulations. For this particular 

locomotion mechanism, the forward kinematics can reach the 

unique solution. However, the inverse kinematics usually results 

in multiple solutions. An elimination criterion based on the 

effective region of the spherical surface and the range of the 

joint displacements can be used to discard those unfeasible 

solutions. But to reach the unique solution, additional 

information about the configuration of the robot’s body must be 

given.  

The forward kinematics lays the theoretical foundation for 

the remote monitoring of the robot’s motion on smooth terrains. 

And the inverse kinematics can be used in the control of the 

robot’s body in a specific contact case. The closed-form 

kinematics solutions allow themselves to be used efficiently in 

real-time operations. Besides these topics, future research 

should also include the motion planning algorithm of tracking a 

given path on the ground, and the design optimization of the 

surface geometry at the tail to adapt to various terrains. 
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APPENDIX  
 

Closed-form configuration matrix 
B

OH  for inverse kinematics analysis: 

 

“1-1: parallel” 

 

2

1 1 1 1 1 2 1

1 1 1 1 1 2 1

cos sin sin / 2 sin

sin sin cos cos cos sin sin sin cos

c

cos sin sin cos cos cos sin cos

os sin

cos cos sin cos sin

cos sincos sin cos cos

0 0 0 1

B

O

dl D

D

D

  

   

 

  

   

    

 



 
 

       
 
        
 







H

 
(A) 

 

 

“1-1: skew” 

 

 
   
   

 
     

tw 2 tw

1 tw tw 1 2 1 2

1 tw tw 1 2 1 2

2 tw tw 2

tw 1 2 1 2 2 1

cos cos sin
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