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Abstract Research in mobile robotics, unmanned systems, and autonomous man-
portable vehicles has grown rapidly over the last decade. This push has taken the
problems of robot cognition and behavioral control out of the lab and into the field.
In such situations, completing complex, sophisticated tasks in a dynamic, partially
observable and unpredictable environment is necessary. The use of a Hierarchical
State Machine (HSM) for the construction, organization, and selection of behav-
iors can give a robot the ability to exhibit contextual intelligence. Such ability is
important for maintaining situational awareness while pursuing important goals,
sub-goals, and sub-sub goals. Using the approach presented in this paper, an assem-
blage of behaviors is activated with the possibility of competing behaviors being
selected. Competing behaviors are then combined using known mechanisms to pro-
duce the appropriate emergent behavior. By combining hierarchy with parallelism
we present an approach to behavior design that balances complexity and scala-
bility with the practical demands of developing behavioral systems for use in the
real-world. The effectiveness of merging our hierarchical arbitration scheme with
parallel fusion mechanisms has been verified in two very important landmark chal-
lenges, the DARPA Urban Challenge autonomous vehicle race and the International
RoboCup robot soccer competition.

Keywords Action Selection · Hybrid Architecture · DARPA Urban Challenge ·
RoboCup

1 Introduction

The problem of high-level behavioral programming is defined primarily by its
position within a greater Hybrid Deliberative-Reactive control architecture such
as [1–6]. Traditionally, behavior-based software agents are responsible for low-level
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Fig. 1 Inputs and outputs for a behavioral software module

reflexes and direct actuator control while deliberative agents are used for more
cognitive, high-level functions. With the rapid growth of computing technology,
however, there has been a re-emergence of deliberative methods for low-level
motion planning [6–8]. Such methods provide the important traits of predictability
and optimality, which are extremely useful from an engineering point of view. This
trend, along with the need for robots capable of handling more and more complex
problems, has resulted in a shift in scope and responsibility for behavior-based soft-
ware agents within Hybrid control architectures .

The need now exists for a behavioral control component capable of bridging
the gap between high-level mission planning and low-level motion control. This
behavioral module must be capable of abstract decision making in order to complete
complex, multi-faceted, temporal problems. This reactive, behavior-based software
agent receives perception information about the world through virtual sensors and
dictates desired high-level action through virtual actuators. Virtual sensors use sen-
sor independent perception messages to provide a filtered view of the world and
virtual actuators specify abstract motion commands to a deliberative motion planner.

The responsibility of this behavioral module is to provide two important aspects
of embodied A.I., contextual intelligence and emergent behavior. Contextual intelli-
gence provides the robot with a mechanism for understanding the current situation.
This situation is dependent on both the current goals of the robot, as defined by
the mission planner, as well as the current environment, as defined by the rele-
vant objects present in the world model. Such insight is important for performance
monitoring, self-awareness, and the ability to balance multiple goals and sub-goals.
Emergent behavior is a very important trait of biological intelligence which is under-
stood to be necessary for the success of living organisms in the real world. It allows
for the emergence of complex behavior from the combination of simpler behaviors,
which is important not only for individual intelligence, but cooperative intelligence
in multi-agent systems as well.

This paper presents a novel formulation of a Hierarchical State Machine (HSM)
for providing contextual intelligence within a behavioral agent. A generalized
description of the behavioral HSM is described here for use on mobile robots
with complex applications. This behavioral HSM allows for a subset of behaviors
of varying levels of abstraction be activated and deactivated in real-time. Once
a context dependent set of behaviors are activated, it is expected that conflicting
behavioral outputs be resolved in a manner most appropriate for the specific robot
application.
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2 Background

2.1 The Action Selection Problem

The central focus of behavioral programming is determining at any given moment
what type of action should be performed. Jim Albus, of the National Institute for
Standards and Technology, defines mobile robot intelligence as the ability to “act
appropriately in an uncertain environment, where appropriate action is that which
increases the probability of success, and success is the achievement of behavioral
goals” [9].

The process of deducing the most “appropriate” action is known as the Action
Selection Problem (ASP). Unfortunately, the ability to evaluate “appropriateness”
is a very complex problem and one that causes even many humans trouble. While
choosing the absolutely rational, or optimal action is often impossible without see-
ing into the future, we can hope to select “good enough” or satisficing actions, as
defined in [10]. According to Maes, the following requirements are needed of any
Action Selection Mechanism (ASM) to produce “good enough” behavior [11].

• Goal-orientedness – the favoring of actions that contribute to one or several
goals

• Situatedness – the favoring of actions that are relevant to the current situation
• Persistence – the favoring of actions that contribute to the ongoing goal
• Planning – the ability to avoid hazardous situations by looking ahead
• Robustness – the ability to degrade gracefully
• Reactivity – the ability to provide fast, timely response to surprise

In [10], the following requirements for an ASM capable of producing satisficing
behavior were added.

• Compromise – the favoring of actions that are best for a collection of behaviors,
rather than for individual behaviors

• Opportunism – the favoring of actions that interrupt the ongoing goal and pursue
a new one

From our own experiences developing ASMs for both the Urban Challenge and
RoboCup, a capable ASM should also take into account:

• Temporal Sequencing – the ability to define a necessary order for tasks and
sub-tasks

• Uncertainty Handling – the ability to not react poorly to perception noise

It is very important to note that some of these many requirements conflict with
each other. For example, persistence can be in conflict with opportunism and situ-
atedness. Similarly, planning is in conflict with reactivity. It is therefore impossible
to create an ASM which meets all of these requirements equally. Instead an ASM
must attempt to trade-off between these requirements in a way that best fits the given
application.
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2.2 Existing Action Selection Mechanisms

Taxonomies of existing ASMs are seen in [12–14]. Of these taxonomies, the most
complete and comprehensive is by Pirjanian in [14]. Pirjanian breaks down all
ASMs as being either in the arbitration or command fusion class.

Arbitration ASMs allow “one or a set of behaviors at a time to take control for a
period of time until another set of behaviors is activated” [14]. Arbitration ASMs are
therefore most concerned with determining what behaviors are appropriate given the
current situation. Once this has been determined it is guaranteed that there will be no
conflict in outputs between the running behaviors and so no method of combination
or integration is needed. ASMs within the arbitration category are further broken
down into priority-based, state-based, or Winner-take-all subclasses.

Command fusion ASMs, on the other hand, “allow multiple behaviors to con-
tribute to the final control of the robot” [14]. Rather than being concerned with
selecting appropriate behaviors, command fusion ASMs let all behaviors run con-
currently, then rely on a fusion scheme to filter out insignificant behavioral outputs.
Command fusion ASMs are therefore typically described of as being flat. Since
multiple behaviors can end up desiring the same control, these ASMs present novel
methods of collaboration amongst behaviors. This cooperative approach, rather than
competitive, can be extremely useful in situations with multiple, concurrent objec-
tives. For example, in the robot navigation domain, command fusion ASMs are use-
ful for both avoiding an obstacle and proceeding towards a goal at the same time.
An arbitration ASM would be constrained to doing one or the other. ASMs within
the command fusion category are further broken down into Voting, Superposition,
Fuzzy, or Multiple Objective subclasses.

Arbitration mechanisms, on the other hand, are more efficient in their use of
system resources. By selecting only one behavior from a group of competing behav-
iors, processing power and sensor focus can be wholly dedicated to one thing. In a
flat, command fusion ASM, all behaviors must be operating at all times in order to
vote for the action they prefer. As the complexity of the robot application grows,
the number of behaviors needed grows, and so does the necessary resources in a
command fusion ASM. In a hierarchical arbitration ASM, however, the library of
behaviors can grow as much as it wants, but only a subset of those behaviors will
ever be needed at any given moment.

Well known examples of arbitration ASMs include the Subsumption Architec-
ture [15] and Activation Networks [11]. Popular examples of command fusion
ASMs include Potential Fields [16], Motor Schemas [17], Distributed Architecture
for Mobile Navigation (DAMN) [18], and Fuzzy DAMN [19].

In this paper, a method of merging these two different classes of ASMs is pre-
sented. In doing so, the strengths of both arbitration and command fusion mecha-
nisms hope to be preserved. This is possible by placing an arbitration ASM in
sequence with a command fusion ASM. The result, in essence, is the ability to
select a subset of behaviors given the current situation. Then, if multiple behav-
iors competing for the same output are activated, they can still be cooperatively
combined using a method of command fusion. Specifically, a state-based, hierar-
chical, arbitration ASM is used for behavior coordination. This method utilizes a
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hierarchical network of Finite State Automata (FSA), which can be referred to as a
Hierarchical State Machine (HSM). To integrate the outputs of the activated behav-
iors, almost any known method of command fusion may be used. However, the
chosen method should exhibit the qualities most conducive to the specific robotic
application.

2.3 Hierarchy with Parallelism

It has been shown in [20] that the major bottleneck in developing behavioral intelli-
gence is not selecting the best approach or architecture, but developing the correct
version of this approach. While complexity is needed for multi-faceted problems,
reducing complexity is important for making the robot designer’s job simpler. It
is not enough that a behavioral system be able to do a lot of things, it is equally
important that they do all those things right, and at the right times.

In real-world applications with major repercussions for incorrect behavior, per-
formance predictability can be paramount. The ability to hand code behaviors and
ignore certain perceptual triggers at certain times is extremely useful and important
for goal-orientedness. Hierarchy takes advantage of selective attention to make this
hand-coding of behaviors possible and practical. Yet at the same time, complex
combinations of behaviors are important for developing higher level intelligence.

Combining hierarchy with parallelism in the method presented in this paper pro-
vides important flexibility to the behavioral programmer. Situations in need of pre-
dictability can be catered to, while other situations can still take advantage complex,
parallel, combination schemes. This approach balances quantity and complexity
with design practicality.

3 Behavioral HSMs

Using a hierarchical approach to behavior decomposition is a common practice in
ethology. It allows for the differentiation of behaviors according to their level of
abstraction. According to Minsky in the Society of Mind [21], intelligent beings
consist of agents and agencies. All agents are organized in a hierarchy where
abstract agents are built upon lower, less abstract agents. Each agent has an indi-
vidual motive which it pursues by activating and deactivating lower, subordinate
agents. Groups of related agents in the hierarchy are viewed as sub-systems, and the
hierarchy as a whole is the overall system.

3.1 Hierarchical Structure

A very similar organization has been adapted here, except agents refer to individual
behaviors. All behaviors are similarly organized in a hierarchy with more abstract
behaviors higher in the tree, and more physical behaviors lower in the tree. At any
given time a subset of the total number of behaviors in the hierarchy are activated
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and the rest are deactivated. The activated behaviors are considered to be along the
activation path. Each behavior, or node, in the tree is responsible for determining
which of their sub-behaviors should be activated. This is determined by each behav-
ior’s internal state and is not limited to only one sub-behavior. For example, given
behavior A in state X, two parallel, sub-behaviors may be activated at the same time.
The result is a branch in the activation path and can be seen in Fig. 2.

We can also see from Fig. 2 that all behaviors have implied relationships based
off of their position within the hierarchy tree. Behaviors can have parent-child rela-
tionships or sibling relationships, but it is important to note that these relationships
do not necessarily imply importance or priority. While some arbitration ASMs use
hierarchy to determine the relevance of a behavioral output [15], this approach uses
hierarchy solely as an abstraction method for task decomposition. Simply put, the
primary function of the hierarchical tree is to determine what behaviors to run. Using
a hierarchy allows us to logically break down a complex task into smaller, more
manageable pieces.

Establishing the final output to each virtual actuator (VA) is therefore handled
by a set of command fusion ASMs. As seen in Fig. 2, two sibling behaviors are
collaborating/competing for control of VA1. VA2, on the other hand, has a parent-
child pair producing command messages. It is also possible for a single behavior
to produce more than one VA command if it requires explicit coordination between
two or more VAs. However, it is not required for every behavior to produce a VA
command. Some behaviors, especially higher-level, more abstract behaviors may be
used solely as decision nodes in the hierarchy. The internal state of these behaviors
is important in determining the activation path and subsequently what lower-level
behaviors will run, but do not necessarily request specific action themselves. These
behaviors are seen in Fig. 2 as activated, but not having a specific texture.

Fig. 2 General example of a behavioral HSM
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Any behavior which produces one or more VA commands is classified as a com-
mand behavior. Any behavior which results in the activation of lower sub-behaviors
(i.e., not a leaf node) is classified as a decision behavior. These classifications are
not mutually exclusive, so it is possible for a behavior to be both a command and
decision behavior.

3.2 Behaviors as Finite State Automata

Every behavior is modeled as an individual state machine, or finite state automata
(FSA). Individual behaviors can therefore be formally described as consisting of
a set of controls states csi ∈ C S. Each control state encodes a control policy, πva ,
which is a function of the robot’s internal state and its beliefs about the world (virtual
sensor inputs). This policy, πva , determines what action with respect to a specific VA
to take when in control state csi . All behaviors have available to them the same list
of virtual actuators vai ∈ V A. Furthermore, each control state has hard-coded what
sub-behaviors sbi ∈ SB to activate when in that state.

Transitions between control states occur as a function of the robot’s perceptual
beliefs, in the form of virtual sensors, or built-in events, such as an internal timer.
While each behavior may have a “begin” and “end” state corresponding to the start
and completion of a specific task, a single behavior, or state machine, cannot termi-
nate itself. The higher, calling behavior always specifies what sub-behaviors should
be running. Should a sub-behavior complete its state sequence and have nothing to
do, it will remain in an idle state and not compete for control of any VA.

A simple example of an abstract behavior used for robot soccer is shown Fig. 3.
The Field Player – Attacker behavior shown here is just one behavior within the

Fig. 3 A behavioral state machine for robot soccer
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overall behavior hierarchy needed for a generic soccer playing robot. It is a decision
behavior with four control states and a multitude of transitions for moving between
these control states. While all transitions in this example are based off of perceptual
occurrences, some may require a combination of virtual sensor inputs before being
evaluated to true. For example, Open Shot may require perceiving the goal as being
in front of the robot as well as perceiving the presence of no other robots before trig-
gering.

Of course this individual behavior is only one within a hierarchy of other more,
and less, abstract behaviors. A higher-level behavior might determine the role of
the robot based off of the game situation or user inputs. For example, if the team
is winning significantly it might be desired to have attacking players transition to
a defender role, at which point the behavior shown in Fig. 3 might no longer be
called. On the other side, each control state shown has a selection of sub-behaviors
which are activated when in that control state. Let the Field Player – Attacker
behavior be in csApproachBall , it is possible then that sbWalkToBall , sbTrackBall , and
sbAvoidObstacle are activated, each with their own state machine and correspond-
ing sub-behaviors. Since the behavior shown here is a decision behavior and not a
cmand behavior, csApproachBall has no control policy with respect to a virtual actua-
tor. Instead, the primary function of this behavior is to determine what sub-behaviors
to run given the current situation.

From these examples we see how a HSM, and particularly the current activation
path within that hierarchy, are representative of the robot’s current situation. This
situation is a function of the robot’s environment, the goals of the robot, and the
internal states of the robot. In total, proper construction of the HSM will result in
providing contextual intelligence to the robot. Producing emergent behavior, how-
ever, is left to the Command Fusion mechanism.

3.3 Application Specific Command Fusion

As stated earlier, the hierarchical relationship between behaviors has no relevance
to the likelihood of that behavior’s effect on a specific VA. Once all the behaviors
along the activation path have been defined by the arbitration mechanism described
previously, their hierarchy is thrown out and they are put in a ‘flat’ structure. Their
individual outputs are then combined by a series of command fusion ASMs, with
each instance corresponding to a single virtual actuator. The specific mechanism
used for command fusion is not specified in this approach, and instead should be
determined by the designer according to the robot application and specific virtual
actuator. It is therefore possible to have one command fusion method for VA1 of
robot X, and a separate command fusion method for VA2 and VA3 of the same robot.
This general approach to command fusion is seen in Fig. 4.

Returning to the robot soccer example presented in the previous section, let VA1

be a vector which defines the direction and speed of a walking gait. Based on the
current activation path in the HSM, the walkToBall behavior and the avoidObstacle
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Fig. 4 Layered command fusion mechanisms

behavior are outputting desired gait vectors. It therefore makes sense, in this robot
navigation example, to use a superposition mechanism of command fusion, such
as potential fields or motor schemas. This would be the simplest way of producing
the desired emergent behavior of approaching the ball while avoiding other robots
along the way. Take now the situation where the robot is attempting to kick the ball
into the opposing goal. Let VA2 be a set of discrete kick types, leftFoot forward,
leftFoot backward, rightFoot forward, rightFoot backward, etc. Just the fact that
there are only a set number of discrete kick types makes a superposition-based
ASM inappropriate. Instead a voting-based ASM would be much more applicable,
where each behavior would vote for one type of kick, and the kick with the most
votes would be selected. Taking yet another, further example, examine the behavior
needed to select lanes when driving down in urban street in an autonomous vehicle.
In this situation, one behavior desiring to stay in the right lane for an upcoming turn
is running concurrently with a behavior desiring to pass a slow moving vehicle by
moving to the left lane. Let the VA be the desired lane, and again we see that a
superposition ASM is not appropriate. In this robot application, driving in between
two lanes is unacceptable. Instead, a single lane should be chosen, either the left or
the right.

We see from these examples the result of selecting different fusion ASMs.
Depending on the exact mechanism chosen, completely different emergent behavior
can result. This provides the robot designer with the flexibility to pick and choose
the most appropriate method for the desired emergent behavior.

4 Real-World Application

The ultimate goal of action selection and behavior-based decision making research
within mobile robotics is to build a physically embedded system that can exist
autonomously in the real world. Action selection mechanisms that work in virtual
environments are often unsatisfactory when transported to agents that must deal
with real world uncertainty. It is therefore desirable to inspect the performance of
any approach to behavioral programming on real robots performing real tasks.
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The use of behavioral HSMs as described in this paper has been verified in
two very important examples, the DARPA Urban Challenge and the International
RoboCup soccer competition. At first glance, these two real-world robotic appli-
cations are extremely different. The DARPA Urban Challenge is concerned with
building a full-sized autonomous ground vehicle capable of driving in an urban
environment. RoboCup, on the other hand, is focused on creating a team of
fully-autonomous humanoid robots capable of playing soccer. Across these two
applications, the base platform is drastically different; from a 1.8 ton, 4-wheel,
differentially steered vehicle to a bi-pedal, 2 foot tall humanoid robot. The goals of
each robot are significantly different as well, from urban driving to goal scoring.
In both of these landmark challenges, however, the core problem of a behavioral
control structure is the same. Both robots must somehow balance dynamically
changing desires while trying to achieve mission objectives in a real and unpre-
dictable environment.

4.1 DARPA Urban Challenge – Team VictorTango

In November 2007, the Defense Advanced Research Projects Agency (DARPA)
hosted the Urban Challenge, an autonomous ground vehicle race through an urban
environment. In order to complete the course, the fully autonomous vehicle had
to traverse 60 miles under 6 h while negotiating traffic (both human and robotic),
through roads, intersections, and parking lots. Out of an original field of hundreds
of teams from across the globe, only 35 were invited to the National Qualifying
Event (NQE) in Victorville, California. After rigorous testing, only 11 teams were
selected to participate in the Urban Challenge Event (UCE). Of these 11, only 6
teams managed to finish the course, with the top three places going to Carnegie
Mellon University, Stanford University, and Team VictorTango of Virginia Tech.

In order to complete the challenge, vehicles had to contend with complex sit-
uations in crowded, unpredictable environments. A behavioral system capable of
obeying California state driving laws in merging situations, stop sign intersections,
multi-lane roads, and parking lots was needed. While a vehicle did not need to
actively sense signs or signals such as traffic lights, right-of-way rules had to be
followed as well as precedence-order at predefined intersections. This required the
sensing, classification, and tracking of both static and dynamic obstacles at speeds
up to 30 mph. To be successful, the vehicle had to balance goals of dynamically
changing importance, traversing the course as quickly as possible while remaining
a safe and “defensive” driver. The software module utilized by Team VictorTango to
attack this problem employed a behavioral HSM for arbitration and a voting-based
method for conflict resolution.

This implementation was able to produce an excellent performance at the Urban
Challenge Final Event. Team VictorTango placed third overall, completing the
course and all of its rigorous tests well within the 6 h limit and only minutes behind
the leaders. After post-processing all the recorded data from the final race and exam-
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Fig. 5 Odin, Team Victor Tango’s entry in the DARPA Urban Challenge (Credit: Dr. Al Wicks,
Mechanical Engineering Department, Virginia Tech)

ining hours of video, it was determined that the behavioral component made no
incorrect decisions throughout the entire course of the race.

4.2 RoboCup – Team VT DARwIn

The landmark challenge presented by RoboCup is to develop a team of fully
autonomous humanoid robots that can win against the human world soccer cham-
pion team by the year 2050. While it is unlikely that this will be accomplished in any
near term, the idea of soccer as a standard arena for mobile robots has been widely
accepted. It is estimated that more than 500 teams consisting of 3,000 scientists
from 40 countries will participate in RoboCup 2008 in Suzhou, China, making it
the largest competition in the project’s history.

The Robotics and Mechanisms Laboratory (RoMeLa) of Virginia Tech has
developed a team of fully autonomous humanoid robots for entry in the kid-size
humanoid division [23,24]. In this division a team of 3 fully autonomous humanoid
robots must play the game of soccer against another team of robots. All sensing and
processing must be performed on-board, and wireless transmission may be used
only for communication amongst individual players. All sensing must be roughly
equivalent to the capabilities of a human, prohibiting the use of active sensors that
emit light, sound, or electromagnetic waves. In order to qualify for competition,
robots must be able to localize an unknown ball position, walk to the ball while
maintaining stability, localize a goal and position around the ball for kicking, kick
the ball towards the goal, and autonomously detect and recover from a fall. To per-
form well in competition, robots must also be able to defend against other teams
attacks, dive to block kicks if designated as a goalie, avoid contact with other robots,
and work strategically as a team.
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Fig. 6 DARwIn IIa and IIb competing in RoboCup 2007 (Credit: Dr. Dennis Hong, RoMeLa,
Virginia Tech <www.me.vt.edu/romela/RoMeLa/Meda.html>)

Like the Urban Challenge, each individual robot must be able to handle com-
plex situations in an unpredictable and noisy environment. A behavioral system is
needed that can balance dynamic goals such as scoring, defending, and maneuver-
ing. Therefore, a method for providing contextual intelligence and the ability to pro-
duce emergent behavior are again required for successful operation. For RoboCup,
a software module built around a behavioral HSM was used. By developing this
implementation and comparing it with the Urban Challenge implementation, the
portability of high-level behavioral programming across drastically different plat-
forms and functionality requirements can be seen.

5 Discussion and Conclusion

The arbitration ASM presented in this paper is a novel variant of existing state-
based ASMs and utilizes a Hierarchical State Machine for task decomposition and
behavior selection. The mechanism proposed in this paper provides the robot with
contextual intelligence by maintaining a subset of activated behaviors with internal
states that represent the robot’s current situation. With environmental changes or the
completion of sub-tasks and sub-sub-tasks, the activation path within the behavioral
HSM will reflect the new situation.

In the case of multiple behaviors competing for control of a virtual actuator,
the specific command fusion ASM is not specified and should be chosen based
on the robot application. The organization of ASMs in this approach allows many
typical and well known command fusion ASMs to be implemented. The selection
and implementation of these command fusion mechanisms will result in the selected
subset of behaviors producing the appropriate emergent behavior. In total, the use
of behavioral HSMs addresses many important problems with existing ASMs, but
like any solution, there are some important benefits and drawbacks which should be
identified.
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5.1 Benefits

Task Decomposition – The organization of behaviors in a hierarchical tree
according to their level of abstraction is extremely useful for breaking down
a task into manageable sub-tasks, and sub-sub-tasks that can be solved as
independent solutions. Due to the fact that robotic behaviors still need to be
largely hand-coded, a logical method for decomposition is very helpful in
this process.

Temporal Sequencing – Through the use of state machines in each behavior,
the robot designer can easily imply when the order of tasks is important and
when it is not. Every behavior uses a state machine to define which sub-
behaviors are activated. This designer can therefore use state transitions to
imply order in the completion of those lower sub-behaviors.

Behavior Reuse – By taking a “divide-and-conquer” approach to behavioral
problem solving, it is possible to reuse lower-level behaviors for similar
problems. A sub-behavior for control state i of behavior x, can also be a
sub-behavior for control state j of behavior y.

Behavior Commonalities – In conventional state machines, there are many
commonalities amongst different states. In the behavioral programming
example, it is possible that many different behaviors would encode the same
policy for a specific VA. By using a hierarchical state machine, encoding
this policy in every behavior is unnecessary. Instead, a higher-level behavior
allows us to define common policies only once.

Perception Requirements – From a systems engineering perspective, the use
of state machines is very useful because state transitions define all percep-
tion and virtual sensor requirements. By building the behavioral HSM first,
a robot designer is aware of what information needs to be pulled from the
environment.

Uncertainty Handling – A unique property of state-based behaviors is that
they can be made robust to perception noise. This is possible because state
transitions are directional. The requirements for transitioning from control
state A to control state B can be different then the requirements for transi-
tioning from B to A. If there is noise in the perception data (which there usu-
ally is), defining these transitions properly can prevent flip-flopping between
states.

5.2 Drawbacks

Preprogrammed vs. Learned – Individual behaviors and their relationships
within the greater hierarchy must be hand-coded. As a result, determining the
control policies and parameters built into each state of each behavior is a time
consuming and error prone process. Testing, both in simulation and on the
actual robot, is absolutely essential but not always possible. It is desirable to
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automatically generate or learn behaviors, or at least autonomously modify
parameters and control policies based off of the robots actual experience.
Such learning methods are not addressed in our approach but are being
researched elsewhere [22].

Performance Measurement – There exists no formal method for measuring
and comparing the performance of the presented approach against other
existing approaches. While “good enough” behavior defines important
functional requirements, there is no quantitative method of comparison
for “goal-orientedness,” for example. Qualitative observations are the only
major source of comparison which is generally insufficient. Performance
comparison of ASMs can be done in a standard simulation environment [10]
or even better in real-world competitions such as the DARPA Urban Chal-
lenge. However, with non-standardized platforms, sensors, and technology,
the overall performance of any team is not a good indication of the smaller
behavioral programming problem. Furthermore, since the behavior hierarchy
is hand-coded, different implementations of the same approach can have very
different results. The overall performance, therefore, is still dependent more
on the designer than the approach itself.
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