
Active Stabilization of a Humanoid Robot
for Real-Time Imitation of a Human Operator

Seung-Joon Yi∗†, Stephen G. McGill∗, Byoung-Tak Zhang†, Dennis Hong‡ and Daniel D. Lee∗

Abstract—Imitating the motion of a human operator is an
intuitive and efficient way to make humanoid robots perform
complex, human-like behaviors. With the help of recently
introduced affordable and real-time depth sensors, the real
time imitation of human behavior has become more feasible.
However, due to their small footprint and high center of mass,
humanoid robots are not inherently stable. The momentum
generated by dynamic upper body movements can induce
instabilities that are often large enough to make the robot
fall down. In this work, we describe a motion controller for a
humanoid robot where the upper body is controlled in real time
to imitate a human teacher, and the lower body is reactively
stabilized based on the current measured state of the robot.
Instead of relying on the accuracy of robot dynamics, we use
biomechanically motivated push recovery controllers to stabilize
the robot against unknown perturbations that include possible
impacts. We demonstrate our approach experimentally on a
small humanoid robot platform.

Keywords: humanoid robot, real-time imitation, biomechan-
ically motivated push recovery

I. INTRODUCTION

Designing human-like behaviors for humanoid robots with
large degrees of freedom is a challenging task, yet making
these robots imitate recorded human motions can be an
easy and efficient solution. There have been a number of
approaches that use captured human motion data to generate
corresponding humanoid robot behaviors.

Due to the differences in the dynamics of humans and hu-
manoid robots, full body motion can lead to instability on the
robot. In general, achieving stable human motion replication
requires a significant amount of offline processing.

One popular technique to allow a humanoid robot to
retain its balance includes enforcing ZMP constraints during
execution [1], [2], [3]. Researchers have identified the ZMP
point of the human, and mapped this information to the robot,
in addition to joint angles [4]. However, while ZMP is being
controlled in real time, there is always an offline planning
component before playing motion back on the robot. In
addition to ZMP, angular momentum from limb motion can
be controlled in [5].

To capture full body motion in real time application,
researchers have used 2D vision images to identify skeletons
[6], [7]. Using markers that were placed on the human, the
system could identify crucial joints to mimic. However, this

∗ GRASP Laboratory, University of Pennsylvania, Philadelphia, PA
19104 {yiseung,smcgill3,ddlee}@seas.upenn.edu
† BI Laboratory, Seoul National University, Seoul, Korea.
btzhang@ceas.snu.ac.kr
‡ RoMeLa Laboratory, Virginia Tech, Blacksburg, VA 24061
dhong@vt.edu

Fig. 1. The DARwIn-OP robot imitating the full body behavior of human
operator in real time

requires intrusive changes to a human. With point clouds
becoming more prevalent, groups have extracted human
figures from this information to mimic skeletons [8]. With a
quarter second delay, this work is near real time. However,
neither of these approaches seeks to not incorporate walking
engines to drive the lower body.

Although the ultimate goal of imitation-based control
is the real time imitation of human behavior on a free-
walking humanoid robot, most of the previous approaches
are confined to either imitation with offline conditioning
or externally supported humanoid robot with perfect upper
body imitation. There are two problems inhibiting real-time
imitation.

The first problem is that tracking human motion required
large, stationary motion capture systems, which makes real-
time control cumbersome in general. However, the recent in-
troduction of compact depth sensors that can non-invasively
track human limbs made imitation a very practical way to
control the robots in real time. The second, more pressing,
problem is that unsupported humanoid robots are not very
stable due to their upright posture. Momentum generated by
dynamic movement of limbs then can destabilize the robot
if this momentum is not handled properly.

In this work, we focus on the problem of making a
humanoid robot imitate human operator’s motion in real
time while keeping balance. In contrast to offline approaches
which record human motion and optimize it for a humanoid

2012 12th IEEE-RAS International Conference on Humanoid Robots
Nov.29-Dec.1, 2012. Business Innovation Center Osaka, Japan

978-1-4673-1369-8/12/$31.00 ©2012 IEEE 761

Fig. 2. Overview of the system.

robot to satisfy stability criteria, we use a biomechanically
motivated reactive push recovery controller to cope with
unknown perturbations from dynamic movement of upper
body. We validate our approach using physically realistic
simulations, as well as experimentally on the DARwIn-OP
small humanoid robot platform. Experimental results show
that our method can successfully imitate dynamic human
behavior in real time without falling down.

The remainder of the paper proceeds as follows. Section
II describes the details of our human imitation controller
using a depth sensor. Section III reviews our hierarchical
biomechanically motivated push recovery controller using
empirically acquired stability boundaries. Section IV shows
results using a physics-based simulation. Section V describes
and presents experiments on the DARwIn-OP humanoid
robot. Finally, we conclude with a discussion of outstanding
issues and potential future directions arising from this work.

II. REAL-TIME IMITATION OF HUMAN MOTION

We use the Asus Xtion RGB-D depth sensor and pro-
prietary software to capture a humans’ pose at 30 frames
per second. Given this skeleton information, we record
from the device the coordinates, in meters, of the human’s
hands, shoulders, elbows, head, and torso. We retarget the
coordinated given to desired joint angles for the humanoid
robot using inverse kinematics to acquired the end effector
offset.

The Asus Xtion RGB-D sensor sends information to a
computer external to the robot. Both the robot’s onboard
computer and the external computer are connected to the
same wireless network as the robot. Once the desired joint
angles are calculated but the external computer, they are
broadcast via UDP packets that are received by the robot’s
onboard computer. As packets are received, the robot com-
mands its joints, which are PID controlled, to the network-
received desired position.

Figure 2 shows the system diagram of how data flows
in the system. When evaluating the system in simulation,

Fig. 3. Left: Joint IDs assigned to the physical DARwIn-OP. Right:
Kinematic model of the DARwIn-OP

the joint angles from the inverse kinematics calculation are
stored directly into the buffer.

A. Kinematic Retargeting

Human degrees of freedom are much larger than that of
small scale humanoids. Figure 3 shows the kinematic model
of the DARwIn-OP, as compared to a human. Since the
kinematics of the small size humanoid cannot capture the
full range of motion a human operator, the offset of the
human’s hand from the shoulder is scaled to an offset from
the humanoid’s shoulder to hand size. This scale is defined
as the ratio of the sum of the upper arm and lower arm of
the robot to the sum of the arm lengths of the human.

The angle between the upper arm and lower arm is calcu-
lated directly from the upper and lower arm positions so as
to allow the robot’s end effector to reach the correct distance
to the desired coordinate. This angle is commanded via joint
ID 5, and so the equations that follow will include subscripts
for angles to indicate which servo motor is controlled.

θ5 = cos−1
(

~au ·~al

|~au||~al |

)
(1)

Next, we find the joint angles for the shoulder motors that
will move the end effector into place. First, the elevation
away from the saggittal plane of the robot.

θ3 = cos−1
(y

c

)
(2)

Lastly, the rotation in the saggittal plane is considered. This
angle is, however, coupled to the previous calculations.

θ1 = tan−1
(z

x

)
−θ5 (3)

B. Torso Rotation

In addition to mimicking the arm positions, we are also
mimicking the rotation of the human torso. We determine the
body rotation by forming a rotation matrix from the skeleton
information. We assume that the vector from shoulder to
shoulder (~u) and the vector from waist to head (~v) are

762

Fig. 4. The extended LIPM with two additional arm masses.

perpendicular. By normalizing these vectors, we can form a
three dimensional orthonormal basis by including the cross
product of the two vectors (~w). However, in practice, these
basis vectors are not quite orthogonal, and thus there cannot
be a rotation matrix. We find the nearest rotation matrix (R)
that describes the human torso rotation in the following way,
as described in [9].

M = [~u|~v|~w] (4)

R = M(MT M)−1/2 (5)

where u, v, and w are the basis vectors described above. R
is then a proper rotation matrix that is able to capture the
rotation of the human torso. From the rotation matrix, we
extract the desired roll (r), pitch (p), and yaw (y) for use in
the walk controller.

r = tan−1 (R32/R33) (6)
y = tan−1 (R21/R11) (7)
p = tan−1 (−R31/(R11 cos−1 y+R21 sin−1 y)

)
(8)

III. THE SIMPLIFIED DYNAMICS MODEL

To model the dynamics of the robot imitating human
behavior in real time, we use an extended linear inverted
pendulum model (LIPM) with two more point masses as
in figure 2. This model has center of mass (COM) height
z0, torso mass Mbody, arm mass Marm, and horizontal COM
positions of torso and two arms from support point are
denoted by xbody, xarm1 and xarm2 . As we assume LIPM for
each mass, the torques at the point p due to each mass are

τbody = Mbody
(
ω

2(xbody− p)− ẍbody
)

(9)

τarm1 = Marm
(
ω

2(xarm1 − p)− ẍarm1

)
(10)

τarm2 = Marm
(
ω

2(xarm2 − p)− ẍarm2

)
(11)

where ω =
√

g
z0

and g is the gravitational constant.
For simplicity, we assume that the hands occupy the same

height, z0. This assumption is flawed if, for instance, up

and down arm motions are executed by the robot. However,
these motions have been subjectively observed to be minor
disturbances.

If we denote the total robot mass as M = Mbody +2Marm,
then they should satisfy the following equation, from work
in [14], to make net moment zero at point p.

xi(φ)=

pi(φ)+ap
i eφ/φZMP +an

i e−φ/φZMP

+mitZMP(
φ−φ1
φZMP
− sinh φ−φ1

φZMP
) 0≤ φ < φ1

pi(φ)+ap
i eφ/φZMP +an

i e−φ/φZMP φ1 ≤ φ < φ2

pi(φ)+ap
i eφ/φZMP +an

i e−φ/φZMP

+nitZMP(
φ−φ2
φZMP
− sinh φ−φ2

φZMP
) φ2 ≤ φ < 1

(12)

Mω2 p = Mbody(ω
2xbody− ẍbody)+

Marm(ω
2xarm1 − ẍarm1)+

Marm(ω
2xarm2 − ẍarm2),

(13)

which ensures the dynamic stability of the robot if the
position of p lies inside the support polygon during the
motion. As we assume that the robot imitates human motion
in real time, arm positions xarm1 and xarm2 are externally
given. Then we define both arms as linear joints

farm1 = xarm1 − xbody (14)
farm2 = xarm2 − xbody, (15)

to update the torso trajectory using (3)

ẍbody = ω2(xbody− p)+Marm(ω
2 farm1 − f̈arm1)/M

+Marm(ω
2 farm2 − f̈arm2)/M.

(16)

IV. THE HIERARCHICAL PUSH RECOVERY CONTROLLER

Biomechanical studies show that humans display three
distinctive motion patterns in response to sudden external
perturbations, which we denote as ankle, hip and step push
recovery strategies [10] and are shown in figure 5. The
ankle strategy applies a control torque at the ankle joint,
the hip strategy uses the angular acceleration of torso to
apply a counteractive ground reaction force, and finally the
step strategy changes the base of support to a new position
by stepping. In this section, we review three push recovery
controllers based on those strategies using an abstract model
of the robot, and provide selection criteria based on current
state and the stability region of each controller.

A. Ankle push recovery

The ankle strategy applies a control torque on the ankle
joints to keep the center of mass within the base of support.
We can assume the abstract model in figure 4 (a), where ankle
torque τankle is applied to a LIPM with mass M, COM height
z0 and COM horizontal position x from current support point.
Then the resulting linearized dynamic model is

ẍ = ω
2 (x− τankle/Mg) , (17)

763

(a) (b) (c)

Fig. 5. Three push recovery strategies. (a) Ankle strategy that applies a control torque at the ankle joint. (b) Hip strategy which uses the angular
acceleration of the torso and limbs to apply counteractive ground reaction forces. (c) Step strategy that changes the support point by stepping.

which can be controlled by a PD-control on x with control
gains Kp and Kd .

τankle = Kpx+Kd ẋ, (18)

B. Hip push recovery

The hip strategy uses angular acceleration of the torso
and limbs to generate a backward ground reaction force
(GRF) to pull the center of mass back towards the base of
support. Abstract model in figure 4 (b) includes a flywheel
with point mass at height z0 and rotational inertia I, and
control torque τhip at the COM. Then the resulting linearized
dynamic model is

ẍ = ω
2 (x− τhip/Mg

)
(19)

θ̈hip = τhip/I. (20)

However we should stop the flywheel from exceeding joint
limits. In this case, following the bang-bang profile [11] can
be used for applying hip torque to maximize the effect while
satisfying the joint angle constraint

τhip(t) =
{

τMAX
hip 0≤ t < TH1

−τMAX
hip TH1 ≤ t < 2TH1,

(21)

where τMAX
hip is the maximum torque that the can be applied

on torso and TH1 is the time the torso stops accelerating.

C. Step push recovery

The step strategy moves the base of support towards the
direction of push by taking a step, as shown in figure 4 (c).
If we assume the support point transition occurs instantly
preserving the linear momentum, we can get the following
landing position from the initial support point [11]:

xcapture = ẋ/ω + x. (22)

D. High-level push recovery controller

When pushed, humans perform a combination of push
recovery behaviors according to the particular situation. To
select the appropriate set of push recovery behaviors as
humans do, we use a hierarchical controller where ankle,
hip and step push recovery controllers work as low-level
subcontrollers and the high-level push recovery controller
triggers each according to the current sensory input [12].

For the simplified models shown in Figure 4, previ-
ous analysis have shown the decision boundaries of each
controller based on the current state [13]. If we assume
maximum ankle torque as τankle

MAX , then the stability region
for ankle push recovery controller is derived as

|Mg(ẋ/ω + x)|< τ
MAX
ankle (23)

which is increased by combining the hip strategy plus ankle
strategy

|Mg(ẋ/ω + x)|< τ
MAX
ankle + τ

MAX
hip (eωTH1 −1)2. (24)

Finally, if we assume instantaneous support point transi-
tion without loss of linear momentum, we have the following
stability region for using all three strategies at once:

|Mg(ẋ/ω + x)|< τ
MAX
ankle + τ

MAX
hip (eωTH1 −1)2 +MgxMAX

capture,
(25)

where xMAX
capture is the maximum step size available. In this

case we can use two boundary conditions in (14) and (15) to
select between controllers based on current state. Phase space
trajectory plots and stability regions for each controller are
shown in Figure 5. For the more realistic case with a multi-
segmented body with motor dynamics as on a physical robot,
we can use an empirical stability boundaries trained from
experience [12], [14].

764

(a) Ankle strategy (b) Hip strategy (c) Step strategy

Fig. 6. Stability regions for each push recovery controller. White and gray region denotes stable and unstable region of state space. Black and red lines
denote stable and unstable state trajectories from various initial states.

V. EXPERIMENTAL RESULTS

A. Hardware setup

We use the DARwIn-OP commercial humanoid robot to
validate our approach experimentally. The DARwIn-OP robot
is 45cm tall, weighs 2.8kg, and has a 3-axis accelerometer
and a 3-axis gyroscope for inertial sensing. It has position-
controlled Dynamixel servos for actuators, which are con-
trolled by a custom microcontroller connected to an Intel
Atom-based embedded PC at a control frequency of 100Hz.

B. Real-time imitation performance

Figure 7 shows the DARwIn-OP robot imitating the mo-
tion of human operator. We have found that the robot can
convincingly imitate a number of human motions using its
arms and torso movements, even if it has much lower degree
of freedom compared to human. The overall latency of the
system was below 0.05 s, and the robot motion was only
limited by the velocity limit of the servomotors.

C. Effect of active stabilization controller

To quantitatively test the effectiveness of our active sta-
bilization controller, we generate data logs from human
motion and play these logs on the robot with and without
active stabilization controller. To better compare the effect of
stabilization, we let the robot walk in place during motion,
which makes the robot more unstable than standing still.
The momentum generated by the robot’s limb movements
are large enough to make the robot fall down without push
recovery controller.

Table 1 shows the result of the trials. We found that the
active controller clearly improved the performance for 4 of
the 5 motions we tested, except for one motion which was
stable without active stabilization.

VI. CONCLUSIONS

We propose a system that uses RGB-D camera to track
the motion of human operator to make an untethered hu-
manoid robot imitate that motion in real time. To handle
the perturbations caused by unforeseen upper body move-
ments, we use biomechanically motivated hierarchical push

Motion With Stabilization Without Stabilization
Swing 3/3 0/3

Stir 2/3 0/3
Conductor 2/2 2/2

Jab 2/3 1/3
Uppercut 3/3 0/3

TABLE I
NUMBER OF SUCCESSFUL TRIALS FOR IMITATING DIFFERENT UPPER

BODY MOTIONS.

recovery controllers to stabilize the robot. Our approach is
implemented and demonstrated using a DARwIn-OP small
humanoid robot, and the experimental results show that our
system can make the robot imitate the human motion in real
time, and our active stabilization controller help the robot
stabilize itself while doing upper body motion, even during
walking.

Possible future work includes extending our algorithm
to handle more dynamic full-body motions, as well as
implementation of these algorithms on full-size humanoid
robots.

ACKNOWLEDGMENTS

We acknowledge the support of the NSF PIRE program
under contract OISE-0730206 and ONR SAFFIR program
under contract N00014-11-1-0074. This work was also par-
tially supported by the NRF grant of MEST (2012-0005643),
as well as the BK21-IT program funded by MEST.

REFERENCES

[1] S. Nakaoka, A. Nakazawa, F. Kanehiro, K. Kaneko, M. Morisawa,
and K. Ikeuchi, “Task model of lower body motion for a biped
humanoid robot to imitate human,” in Dances, IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2005.

[2] L. Boutin, A. Eon, S. Zeghloul, and P. Lacouture, “From human
motion capture to humanoid locomotion imitation application to the
robots hrp-2 and hoap-3,” Robotica, vol. 29, no. 2, pp. 325–334.
[Online]. Available: http://dx.doi.org/10.1017/S0263574710000172

[3] B. Dariush, M. Gienger, B. Jian, C. Goerick, and K. Fujimura, “Whole
body humanoid control from human motion descriptors,” in ICRA,
2008, pp. 2677–2684.

[4] S. Kim, C. Kim, B. You, and S. Oh, “Stable whole-body motion
generation for humanoid robots to imitate human motions,” in Intelli-
gent Robots and Systems, 2009. IROS 2009. IEEE/RSJ International
Conference on, oct. 2009, pp. 2518 –2524.

765

(a) Front and back swing

(b) Stirring

(c) Swaying

(d) Straight punching

(e) Uppercut punching

Fig. 7. The real-time imitation of various full-body human motions by the DARwIn-OP robot.

[5] N. Naksuk, C. Lee, and S. Rietdyk, “Whole-body human-to-humanoid
motion transfer,” in Humanoid Robots, 2005 5th IEEE-RAS Interna-
tional Conference on, dec. 2005, pp. 104 –109.

[6] M. Riley, A. Ude, K. Wade, and C. G. Atkeson, “Enabling real-time
full body imitation: A natural way of transferring human movements to
humanoids,” in in: Proceedings of the IEEE International Conference
on Robotics and Automation, 2003, pp. 2368–2374.

[7] K. Yamane, S. O. Anderson, and J. K. Hodgins, “Controlling hu-
manoid robots with human motion data: Experimental validation,” in
Humanoids, 2010, pp. 504–510.

[8] B. Dariush, M. Gienger, A. Arumbakkam, Y. Zhu, B. Jian, K. Fu-
jimura, and C. Goerick, “Online transfer of human motion to hu-
manoids,” I. J. Humanoid Robotics, vol. 6, no. 2, pp. 265–289, 2009.

[9] B. K. P. Horn, H. M. Hilden, and S. Negahdaripour, “Closed-form
solution of absolute orientation using orthonormal matrices,” J. Opt.
Soc. Am. A, vol. 5, no. 7, pp. 1127–1135, Jul 1988. [Online].
Available: http://josaa.osa.org/abstract.cfm?URI=josaa-5-7-1127

[10] A. G. Hofmann, “Robust execution of bipedal walking tasks from
biomechanical principles,” Ph.D. dissertation, Cambridge, MA, USA,
2006.

[11] J. Pratt, J. Carff, and S. Drakunov, “Capture point: A step toward hu-
manoid push recovery,” in in 6th IEEE-RAS International Conference
on Humanoid Robots, 2006, pp. 200–207.

[12] S.-J. Yi, B.-T. Zhang, D. Hong, and D. D. Lee, “Learning full body
push recovery control for small humanoid robots.” in ICRA, 2011.

[13] B. Stephens, “Humanoid push recovery,” in Proceedings of the IEEE
RAS International Conference on Humanoid Robots, 2007.

[14] S.-J. Yi, B.-T. Zhang, D. Hong, and D. D. Lee, “Online learning of
a full body push recovery controller for omnidirectional walking,” in
Proceedings of the IEEE RAS International Conference on Humanoid
Robots, 2011, pp. 1–6.

766

