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Abstract— During heavy work, humans utilize whole body
motions in order to generate large forces. In extreme cases,
exaggerated weight shifts are used to impart large impact
forces. There have been approaches to design stable whole
body impact motions based on precise dynamic models of the
robot and the target object, but they have practical limitations
as the uncertainty in the ensuing reaction forces can lead
to instability. In the current work, we describe a motion
controller for a humanoid robot that generates impacts at an
end effector while keeping the robot body balanced before and
after the impact. Instead of relying on the accuracy of the
impact dynamics model, we use a simplified model of the robot
and biomechanically motivated push recovery controllers to
reactively stabilize the robot against unknown perturbations
from the impact. We demonstrate our approach in physically
realistic simulations, as well as experimentally on a small
humanoid robot platform.
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I. INTRODUCTION

One key advantage of humanoid robots is that they can
seamlessly operate in human environments and work with
objects designed for humans. However, object manipulation
can be difficult for a humanoid robot due to its upright
posture and stability issues arising from its relatively small
footprint and high center of mass. Thus, a large portion
of humanoid robot research has focused on realizing stable
bipedal locomotion without losing balance.

There is also difficulty in exerting large forces in object
manipulation since the ensuing large reaction forces can
destabilize the balance of the robot. Humans instinctively
modify their body posture during heavy work, and previous
studies have investigated pushing heavy objects in simulation
[1], [2], and on physical robots using optimized postures [3].
Full body posture control in conjunction with force sensors
to lift an object with unknown mass was shown in [4].

When static forces are insufficient to accomplish a given
task, humans can utilize dynamic momentum transfer by
imparting an impact motion to an object. Examples of impact
motions in robotics include drumming on the HRP-2 robot,
which showed that impact motion of the arms can apply 50%
more force than quasi-static motions to an object [5]. Other
examples of impact motions using humanoid robots include
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Fig. 1. Possible outcomes of a pre-designed impact motion applied to
targets with different dynamics. (a) A pre-designed impact motion works
well if the impact dynamics matches assumptions. (b) If the reaction force
is larger than expected, the robot may fall backwards. (c) If there is less
reaction force than expected, the robot may fall forwards due to excessive
momentum.

a nailing task with a hammer [6], wooden plate breaking [7],
[8], ball kicking [9], and dynamic lifting [10].

In these works, the reaction forces upon impact are typ-
ically not large enough to hamper stability and were not
considered explicitly. But when the impact motion becomes
large, the reaction forces need to be properly accounted to
ensure the post-impact stability of the robot. There have been
optimzation-based approaches to generate a stable impact
motion given the impact dynamics model of the robot and
the object [11], but they have two practical issues for
implementation on physical robots. The first one is that
due to uncertainty in the reaction force, an impact motion
designed for a particular task may fail when the targets
display unmodeled impact dynamics. Figure 1 illustrates the
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difficulty in accommodating impact motions with unknown
reaction forces. The second one is that optimization-based
approaches are offline methods and cannot be utilized for
the cases when motions are generated in real time, such as
a teleoperation situation.

In the current work, we focus on the problem of generating
a stable impact motion for a humanoid robot with unknown
reaction forces from a different perspective. In contrast to
previous approaches which either assume that reaction force
is negligible or accurately known in advance, we regard the
reaction forces as unknown disturbances applied to the robot,
and use reactive push recovery controllers to stabilize the
robot against them. A simple model of the robot is used to
generate pre-impact motion to maximize the impulse force,
while keeping the state of the robot within the stability region
of the push recovery controller. We validate our approach
using physically realistic simulations, as well as experimen-
tally on the DARwin-OP small humanoid robot platform.
Experimental results show that our method can successfully
apply impact forces on objects with very different inertial
properties without falling down.

The remainder of the paper proceeds as follows. Section II
describes how impact motions are designed for a humanoid
robot utilizing simple dynamic models. Section III reviews
our hierarchical biomechanically motivated push recovery
controller and models its stability boundaries. Section IV
shows results using a physics-based simulation. Section
V describes and presents experiments on the DARwin-OP
humanoid robot. Finally, we conclude with a discussion
of outstanding issues and potential future directions arising
from this work.

II. DESIGNING IMPACT MOTIONS FOR HUMANOID
ROBOTS

The impact motion can be divided into three phases, the
pre-impact phase, the impact phase and the post-impact
phase. At the pre-impact phase, the robot accelerates its
end effector so that it hits the target with large momentum.
During the impact phase, the end effector hits the target and
momentum is transferred between the robot and target. In
the post-impact phase, the robot stabilizes itself from the
ensuing perturbation due to reaction forces imparted during
the impact. We describe each phase in more detail in this
section.

A. Pre-impact phase

At the pre-impact phase, the robot needs to accelerate
its end effector as much as possible to build up linear
momentum, while being stable. To model the dynamics of
the robot in this phase, we use an extended linear inverted
pendulum model (LIPM) with a secondary mass as in Figure
2 (a). This model has center of mass (COM) height z0, torso
mass Mbody, arm mass Marm, and horizontal COM positions
of torso and arm from support point are denoted by xbody
and xarm. As we assume LIPM for each mass, the torques at
the point p due to each mass are

(a) t < T1 (b) t = T1 (c) t > T1

Fig. 2. Simplified models for the three different phases of the impact
motion. (a) Pre-impact model with torso mass Mbody and arm mass Marm.
(b) Impact model with robot and target virtual masses Ma and Mt . (c) Post-
impact model with single point mass with M = Mbody +Marm.

τbody = Mbodyz0
(
ω

2(xbody− p)− ẍbody
)

(1)

τarm = Marmz0
(
ω

2(xarm− p)− ẍarm
)
, (2)

where ω =
√

g
z0

and g is the gravitational constant. If we
denote the total robot mass as M = Mbody +Marm, then they
should satisfy following equation to make net moment zero
at point p

p =
Mbody(ω

2xbody− ẍbody)+Marm(ω
2xarm− ẍarm)

Mω2 , (3)

which ensures the dynamic stability of the robot if the
position of p lies inside the support polygon during the
motion.

To generate the motion trajectories, we can model the arm
as a linear joint

farm = xarm− xbody, (4)

and simultaneously optimize two variables xbody and farm
to maximize the end effector velocity at impact with the
constraints on ḟarm and f̈arm to regulate the maximum
velocity and the force of the joint. However as it is hard to
approximate the joint constraints for robots with rotary joints,
we take a simpler approach of designing the arm motion first
and use it to update the torso trajectory using (3)

ẍbody = ω
2(xbody− p)+Marm(ω

2 farm− f̈arm)/M, (5)

with initial condition xbody(0) = x0 and ẋbody(0) = 0.

B. Impact phase
At the impact phase, the end effector hits the target,

making a momentum transfer between the robot and the
target object. One way to model this is using a mass-spring-
damper model with two virtual masses Ma and Mt [12] as
shown in Figure 2 (b), which is also affected by the posture
of the robot. However as we consider the case when the
reaction force is not precisely known in advance, we use
following simplified impact dynamics model, which assumes
that the arm and the torso forms a single rigid body after
instantaneous impact

x(T1) = (Mbodyxbody(T1)+Marmxarm(T1))/M (6)
ẋ(T1) = (Mbodyẋbody(T1)+Marmẋarm(T1)+Pimpact)/M, (7)
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(a) (b) (c)

Fig. 3. Three biomechanically motivated push recovery strategies. (a) ankle
strategy (b) hip strategy (c) step strategy

where T1 is the time of impact, x is the horizontal COM
position for the LIPM right after impact, Pimpact ≤ 0 is the
instantaneous momentum change due to impact.

C. Post-impact phase

After the impact phase is over, the robot should be able to
stabilize itself. We assume the single mass model in Figure
2 (c) for t > T1 with the initial state (x(T1), ẋ(T1)) from (6),
(7) to straightforwardly apply the LIPM based push recovery
controllers. We should design the torso and arm trajectory so
that the resulting state (x(T1), ẋ(T1)) right after impact lies
in the stability region of the push recovery controller for
a broad range of Pimpact . We cover more detail about the
push recovery controllers and their stability regions in next
section.

III. FULL-BODY PUSH RECOVERY CONTROLLERS

Biomechanical studies show that humans display three
distinctive motion patterns in response to sudden external
perturbations, which we denote as ankle, hip and step push
recovery strategies [13] and are shown in Figure 3. In this
section we review three push recovery controllers based on
those strategies using a simplified model of the robot, and
provide how they can be selected based on current state and
the stability region of each controller.

A. Ankle push recovery

The ankle strategy applies control torque on the ankle
joints to keep the center of mass within the base of support.
We can assume the abstract model in Figure 4 (a), where
ankle torque τankle is applied to a LIPM with mass M,
COM height z0 and COM horizontal position x from current
support point. Then the resulting linearized dynamic model
is

ẍ = ω
2(x− τankle/Mg), (8)

which can be controlled by a PD-control on x

τankle = Kpx+Kd ẋ, (9)

where Kp and Kd are the control gains.

(a) (b)

(c)

Fig. 4. Three push recovery strategies. (a) Ankle strategy that applies
control torque at the ankle joint. (b) Hip strategy which uses angular
acceleration of torso and limbs to apply counteractive ground reaction
forces. (c) Step strategy that changes the support point by stepping.

B. Hip push recovery

The hip strategy uses angular acceleration of the torso
and limbs to generate a backward ground reaction force
(GRF) to pull the center of mass back towards the base
of support. The abstract model in Figure 4 (b) includes a
flywheel with point mass at height z0 and rotational inertia
I, and control torque τhip at the COM. Then the resulting
linearized dynamic model is

ẍ = ω
2(x− τhip/Mg) (10)

θ̈hip = τhip/I. (11)

However we should stop the flywheel from exceeding joint
limits. In this case, following bang-bang profile [14] can be
used for applying hip torque to maximize the effect while
satisfying the joint angle constraint

τhip(t) =
{

τMAX
hip 0≤ t < TH1

−τMAX
hip TH1 ≤ t < 2TH1,

(12)

where τMAX
hip is the maximum torque that the can be applied

on torso and TH1 is the time the torso stops accelerating.

C. Step push recovery

The step strategy moves the base of support towards the
direction of push by taking a step, as shown in Figure 4 (c).
If we assume the support point transition occurs instantly
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(a) Ankle strategy (b) Hip strategy (c) Step strategy

Fig. 5. Stability regions for each push recovery controller. White and gray region denotes stable and unstable region of state space. Black and red lines
denote stable and unstable state trajectories from various initial states.

preserving the linear momentum, we can get following
landing position from initial support point [14].

xcapture = ẋ/ω + x. (13)

D. High-level push recovery controller
When pushed, humans perform a combination of push

recovery behaviors according to the particular situation. To
select the appropriate set of push recovery behaviors as
humans do, we use a hierarchical controller where ankle,
hip and step push recovery controllers work as low-level
subcontrollers and the high-level push recovery controller
triggers each according to the current sensory input [15].

For the simplified models shown in Figure 4, previ-
ous analysis have shown the decision boundaries of each
controller based on the current state [16]. If we assume
maximum ankle torque as τankle

MAX , then the stability region
for ankle push recovery controller is derived as

|Mg(ẋ/ω + x)|< τ
MAX
ankle (14)

which is increased by combining the hip strategy plus ankle
strategy

|Mg(ẋ/ω + x)|< τ
MAX
ankle + τ

MAX
hip (eωTH1 −1)2. (15)

Finally, if we assume instantaneous support point transi-
tion without loss of linear momentum, we have the following
stability region for using all three strategies at once:

|Mg(ẋ/ω + x)|< τ
MAX
ankle + τ

MAX
hip (eωTH1 −1)2 +MgxMAX

capture,
(16)

where xMAX
capture is the maximum step size available. In this

case we can use two boundary conditions in (14) and (15)
to select between controllers based on current state. Phase
space trajectory plots and stability regions for each controller
are shown in Figure 5.

For the more realistic case with a multi-segmented body
with motor dynamics as on a physical robot, these theoretical
boundaries do not fit well and the high-level controller needs
to be trained from experience [15], [17]. We do not cover
the learning algorithm here in detail due to lack of space.

(a) (b) (c)

Fig. 6. Three upper body keyframes for generating the end effector
movement,

IV. SIMULATION RESULTS

A. Simulation setup

We use the commercial Webots robot simulator [18] based
on the Open Dynamics Engine(ODE) physics library with the
supplied simulated model of the DARwIn-OP commercial
humanoid robot. The DARwIn-OP robot is 45cm tall, weighs
2.8kg, and has 3-axis accelerometer and 3-axis gyroscope
for inertial sensing. Our impact motion controller with push
recovery is implemented using our modular open source
humanoid framework [19]. The controller update frequency
and physics simulation frequency are both set to 100 Hz.

We consider the situation where a humanoid robot knocks
another object down by punching. For the target, we use a
uniformly dense rectangular solid with the same COM height
and support base length as DARwIn-OP robot, which is set
in an upright position 30 cm in front of the robot.

B. Motion generation

As the DARwIn-OP robot has wide shoulders and 3 degree
of freedom arms, body rotation is necessary to design a
punch motion that can hit an object directly in front of the
robot. We interpolate three upper body keyframes shown in
Figure 6 to generate the arm motion farm. Torso trajectory
is generated using (5) with parameters x0 = −0.04, M = 2,
m = 0.2 and p =−0.15, where p is found by repeated trials
against 3kg target. For stance parameters we use COM height
z0 = 0.295, ankle width dstance = 0.75 and body frontal tilt
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(a) Without push recovery, 3kg target (d) With push recovery, 3kg target

(b) Without push recovery, 9kg target (e) With push recovery, 9kg target

(c) Without push recovery, 1kg target (f) With push recovery, 1kg target

Fig. 7. Result of applying impact motions with and without push recovery control to targets with different masses in simulated environment.

angle θtorso = 20◦. The push recovery controller is triggered
0.3s after movement starts. We use the ankle and the step
strategy for push recovery, and decision boundaries of (14)
with heuristic parameters are used to select between the
ankle and the step strategy based on current state estimated
from inertial sensor readings. For push recovery controller
parameters, we use values of K′′p = 0, K′′d = 0.15, xMAX

capture =
0.06 and step duration tST EP = 0.35.

C. Results

Figure 7 summarizes the result of applying the impact
motion controller against targets with 1kg, 3kg and 9kg
masses, with and without push recovery. We can see that
the pre-designed impact motion does not work well if the
impact dynamics are different from the initial assumptions.
On the other hand, our approach can stabilize the robot using
ankle torque and reactive stepping against a wider range of
perturbations from the impact.

V. EXPERIMENTAL RESULTS

A. Hardware setup

We use a physical DARwIn-OP robot to validate our ap-
proach experimentally. The DARwIn-OP robot has position-
controlled Dynamixel servos for actuators, which are con-
trolled by a custom microcontroller connected to an Intel
Atom-based embedded PC at a control frequency of 100Hz.
Instead of using targets with different masses, we used a

single target composed of a cardboard box with 2.8kg of
weight attached at the bottom, and changed the distance
between the robot and target.

B. Motion generation

With help of our modular open source humanoid frame-
work, the same controller code is used with different I/O
libraries. We used the same parameters for motion gener-
ation, except for slightly different upper body keyframe to
take the non-ideal servo dynamics into account.

C. Results

Figure 8 shows the result of applying the impact motion
controller for DARwIn-OP robot against targets with dif-
ferent distances1. We can see that our approach can help
the DARwIn-OP humanoid robot to stabilize itself against
unknown perturbations from the impact.

VI. CONCLUSIONS

In this work, we describe a motion controller for a
humanoid robot that can generate impulsive impacts at its
end effector while keeping the robot in balance before and
after the impact. Instead of relying on the precise model
of the robot and prior knowledge about the reaction force,
we view the reaction forces as unknown perturbations and
use biomechanically motivated push recovery controllers to

1http://youtu.be/KIStPiGaxxI
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(a) Without push recovery, target distance 25cm (d) With push recovery, target distance 25cm

(b) Without push recovery, target distance 18cm (e) With push recovery, target distance 18cm

(c) Without push recovery, no target (f) With push recovery, no target

Fig. 8. Result of applying impact motion using a DARwIn-OP robot with and without push recovery control to targets with different distances.

reactively stabilize the robot, which also enabled us to use a
simplified model of the robot for motion generation. Our
approach is implemented and demonstrated in physically
realistic simulations and experimentally on a DARwIn-OP
small humanoid robot. The experimental results show that
our methods can effectively stabilize the robot from unknown
perturbations across a variety of impact forces, and another
benefit of our approach is that it can also be used when
motions are generate in real time as it does not rely on prior
knowledge of reaction force.

Possible future work includes extending current approach
to real-time teleoperation control, incorporating learning al-
gorithms to learn impact dynamics with physical robots, and
implementation of these algorithms on full-sized humanoid
robots.
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