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e-mail: cipra@ecn.purdue.edu In this paper a systematic way of representing complex cable-pulley mechanism configu-
rations and a method to analyze their motion is presented. This technique can also be
School of Mechanical Engineering, used as an aid for synthesis. The cable-pulley system model that is being considered is
Purdue University planar and composed of three basic elements which are pulleys, blocks, and cables. A

West Lafayette, IN 47907-2088 configuration table is used to identify the constraint equations by systematically defining

the connections between the cables, pulleys, and blocks. The basic strategy is to use the
constraint equations to generate the relationship between each variable and a subset of
the variables identified as the inputs. A row reduction process on the system of constraint
equations identifies the number of inputs and ultimately generates the relationships of
each variable to the input(s). Results with different input variables can be easily obtained
by a simple column interchange process. Examples are given to illustrate the procedure.
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1 Introduction 2 Previous Work

Flexible connectors such as belts, ropes, or chains are used fofhere are many advantages for using cables and pulleys in a
transmitting motion and power usually when shafts are so farechanism. Structural simplicity, compactness, light weight, high
apart that a gear drive would be inadvisable. They are also usedstifiness, low friction, low backlash and the ability to absorb
conveyors and hoists. The block and tackle arrangement has beback are some of the advantages which are especially important
used to gain a mechanical advantage in hoisting for a very loffigy robotics applications such as tendon-driven dexterous robotic
time. The Spanish BurtofFig. 1(a)) and the Weston differential hands. Some examples are the MIT/Utah hfhjdand the Salis-
pulley block (Fig. 1(b)) are age-old, interesting examples. Cablebury hand[2] which use many different arrangements of cables
with pulleys are also frequently used to generate parallel motiownd pulleys for their fingers. Ts#B] gives an overview of the
Figure Xc) shows one such arrangement often used to guidecdrrent state of the art in the design of tendon-driven manipulators
straight edge on a drafting board. All of these mechanisms whigtich includes structure, classification, kinematics, statics, dy-
use cables and pulleys have already been studied thoroughly. Famics and control. Low cost and the ability to easily scale in size
their limited applications these mechanisms have simple configeitd produce large-scale mechanisms having a large workspace are
rations and thus have straightforward and simple kinematics oftalo important advantages of using flexible connectors in a
figured out by intuition. mechanism. Some interesting examples include Charlotte, a six

However, cables and pulleys are now starting to be used dggree of freedom tendon suspended platform robot developed for
different configurations for new types of applications such aése on the Space Statig4], Robocrane, a six degree of freedom
tendon-driven manipulators and cable-suspended robots and Hagerted Stewart platform which uses gravity to maintain tension
tic interfaces. Cables can be considered as a “link” which wheift cables and was developed for use in shipping pi®ts and
wrapped around a pulley form a “joint” connecting the cable andany different configurations of cable-suspended haptic interfaces
pulley in a nonslip kinematic relationship. By revisiting theséCSHI such as the 4-cable CSHi], Texas 9-strind7] and the
simple mechanical elementsables and pulleys new types of SPIDAR[8]. _ _ _ _
complex mechanisms can be synthesized for new and excitingfsai and Leq9] investigate the kinematic structure of tendon
applications. However, a general method for analyzing such cofiflven robotic manipulators with the aid of graph theory. Using
plex cable-pulley systems is not currently available. the concept of fundar_nental circuit, dls_placeme_nt equations o_f

In this paper we present a systematic way of representing Co’pﬁndor)-drlven mechanisms are systematically de_rlved_from the ki-
plex cable-pulley mechanism configurations and a method to af@matic structure. However, one of the assumptions in that work
lyze their motion along with examples. Commercially availablé that every pair of pulleys connected by a tendon must have a
computer programs such as Working Model, ADAMS, or DADSArrier in order to maintain a constant distance be_tween the _pul-
can also handle certain complex cable pulley systems. HowewyS. thus the method cannot be used for certain mechanisms
the analysis strategy presented in this paper is much simpler, Where the distance between pulleys can be changed, such as the
lows more control and provides deeper insight thus is invaluag®ock and tackle arrangement used in hoisting where the pulleys
for synthesis compared to such computer programs. One curréfl move relative to each other. . _
limitation of the presented method is that the cables must be eitheMVilliams [10] addresses the issue of limited static workspace
in the X direction or theY direction, and the orientation of the for cable-suspended robots and haptic interfaces due to the inabil-

cables cannot change. A more general case where the cablesiBafif the cable to exert compression by presenting the best design
change their orientation is left as future work. with given constraints and parameteier a planar 4-cable CSHI
with a large static workspace via computer simulation. In order to
Contributed by the Mechanisms and Robotics Committee for publication in thseowe this prOblem of limited static workspace In general, we
JOURNAL OF MECHANICAL DESIGN. Manuscript received Jan. 2001; rev. July 2002.Wanted to synthesize a planar de-coupled CSHI such that all com-

Associate Editor: M. Raghavan. binations of forces and moments are possible at all configurations
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Fig. 2 A basic building block with elements

direction or theY direction, and the orientation of the cables do
not change. Any point on a cable segment between two block or
pulley elements is a potential cable node. The basic building block
which contains a pulley, a block, and two cable nodes of the cable
; wrapped around the pulley is shown in FigaR Each element is
defined by, and operates according to the following rules:

(@) Pulley (P)

* Three variablesAXp;, AYp; and Afp;, measured in the
ground coordinate frame, represent the change in position in
the X direction and théy direction of the center of the pulley
i, and the change in rotation angle of pulleyespectively
(Fig. 2b)).

» The constant p; is the radius of the pulley (Fig. 2(b)).

» Pulleys are attached to a block and thus tiéitmotions are
constrained by theXY motion of that block(for pulley i
attached to block:AXp;=AXgy, AYpi=AYg).

(¢) Parallel Motion by Cables and Pulleys » Acable does not slip over the pulley, thus the rotation and the

X or Y motion of the pulley together constrains the motion of

Fig. 1 Examples of simple cable-pulley systems

in its kinematic workspace. By attaching two cables on the two AL,
opposite sides of a block and maintaining them collinear by using f Pulley P;
pulleys and sliding blocks, the cables can now exert force on the Cable @
block in the opposite two directions and thus eliminate actuation Node Cx
redundancy. However, a general method for analyzing such com-

plex cable-pulley systems was not available. Thus, the motivation

for coming up with this method of representing the configuration,

and analyzing the motion of complex cable-pulley systems was to

aid in synthesis.

at position b
RAGPI

q "A'X'Fi’>/

3 Method and Procedure ® AL,

3.1 Elements of a Cable-Pulley System.The cable-pulley Pulley P; Cable Node C;
system model that is being considered is planar and composed at position a
with three basic elements which are pulleys, blocks, and cables. A
block at most can translate in two orthogonal directions. A pulley ALc;=AXpi+17i MGy
is attached to a block and can only rotate relative to the block. A ALci= AYp; = 1pi ABp;
cable can wrap around a pulley without slip and has a given con-
straint with respect to the pulley. The cables are either inxhe Fig. 3 Change in position of cable nodes
Journal of Mechanical Design JUNE 2003, Vol. 125 / 333
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ALC! =AXpi+1pi AOp;
ALci=AYri = 1pi AOp;

AlL¢;= AXpi+1pi AGp;
ALCk = AXPi = TIpi ABP[

ALc,= AXpi = 12i MG,
\ — = AXpi ALci=AXp;i = 1pi AOp;

ALCj =AY, —1pi AGp;
ALcy = AXpi + 1p: AGp;

ALCj?

AY,
ALcy

-

AXpi ALcy = AXpi — 1pi ABp;

\\‘ S AO, Cable wrapped around and terminated on a pulley

Fig. 4 Cable winding examples

the cable node in that cable direction. Thlis¢;, the change  « Blocks can have sliding constraints relative to other blocks

in position of the cable nod€; in the direction of the cable, (AXgj=AXgy for sliding in theY direction orAYg;=AYg;
is given byAL ¢;j=AXp;*1p;A6p; for a cable in theX direc- for sliding in theX direction or can be stationary as ground
tion, or ALcj=AYp;=rp;Afp; for a cable in they direction (AXgi=0, AYg;=0) (Fig. 5

where the* signs are determined by inspection. An example . g|ocks can not rotate.
is shown in Fig. 3.

Depending on how the cable is wound over a pulley, th
rotation contribution to the change in motion of the cablg:) Cable Node (§

node in the cable direction can either increase or decrease fot A cable node is defined as a point on a cable between two
a positive direction rotation of _the pulley. Figure 4 shows  pock or pulley elementébetween two pulleys, between two
some examples where inspection was used to generate the |, s or between a block and a puliey

Al equation. * Al is the change in position of the cable nodé@ that
cable direction onlyFig. 3. Even if the cable node changes
its position in other directions as well, we are only interested

(b) Block (B;)

« Two variablesA Xg; andAYg; measured in the ground coor- in the position change of that cable node in its cable direction.
dinate frame, represent the change in position of blaokhe A cable can be a closed lodpndless cab)eor an open loop
X direction and ther direction respectivelyFig. 2(c)) (open-ended cable
334 / Vol. 125, JUNE 2003 Transactions of the ASME
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(b) Block-Pulley Subsectiorn(indicate constraints between a
block and a pulley
Sliding between Block j * pulley attached to block

in Y directi o )

Zr;gilcf}l;: i1 dureetion (c) Cable-Block Subsectior(indicate constraints between a
Block k& ’ cable node and a blogk

Sliding between Block i Y cable attached to block i direction

and Block j in X direction X cable attached to block iK direction

Ay =AY, (d) Cable-Pulley Subsectiofiindicate constraints between a

s cable node and a pullgy
E}gfk:lols ground X+ cable wound over pulley iX direction such that ¢

Block j AYs =0 increases agp increases AL c;=AXp;+1p;Abp;)
X~ cable wound over pulley iX direction such thak
decreases a8p increases AL cj=AXp;—rpiA 0p;)
Y+ cable wound over pulley iy direction such thak
Fig. 5 Sliding constraints between blocks increases agp increases L c;=AYp;+1p;A0p)

i . Y— cable wound over pulley ity direction such that
* Both ends of an open-ended cable must be constrained in  gecreases ag» increases &L ;= AYp— piA Op))

motion by being connected to a block or wrapped around and

“Block i -

terminated on a pulleyFig. 4). The number of constraint equgtions can be calculated from the
« The cable can not stretch and thus the total length of a catfi@nfiguration table by the following procedure. Sum the number
does not change. of entries above the diagonal in the block-block subsection and
« The orientation of the cable is either in thedirection or in add two times the number of entries in the block-pulley subsection
the Y direction and does not change. and add the number of entries in the cable-block and cable-pulley

« Cables are always in tension and thus there is no slack. Subsections and lastly add 2 for the block chosen to represent

. . ) ground. The number of variables can be calculated by summing

3.2 Analysis Method. The basic strategy is to use the Conyyq times the numbers of blocks and three times the number of
straint equations to generate the relationship between each v lineys along with the number of cable nodes.

able and a subset of the variables identified as the inputs. This ISy ot the constraint equations identified from the configuration
done by first systematically identifying all of the constraint equadzpie are put into a matrix equation forAx =0 whereA is the

tions, then choosing the input variables, the number of which a’g?stem matrix and is the column vector with all of the variables.

equal to the total number of variables minus the number of indgs A
pendent constraints. This choosing of the set of inputs is doneeli'lr?e system matrixA is then row reduced to generate the row

conjunction with a row reduction process on the system of co cduced system matrid. Now the matrix equatiokix=0s used

straint equations which identifies the number of inputs and ul 0 identify any dependent constraint_s, to (_jetermine the ”“mbef of
mately generates the relationship of each variable to the (Bput inputs ngeded, and to generate relationships between each variable

The identification of the constraint equations is simplified b§"d the inputs. _
the use of a configuration table which shows the topology of the 1€ inputs or outputs can be any of the variablesxg;,
system and defines the connection between the cables, pulléygpi> A0pi, AXgi, AYg; or AL ) of any elementanyi). How-
and blocks. The table is set up with the bloci)(and pulleys €Ver the number of input variables must b_e equal to the degree_of
(P;) making up the columns, and the block ) and cable nodes fre(_edom of t_he system and t_hey must be_lndependent. The choice
(C;) making up the rows as shown for example in Table 1. THef input variables can be aided by looking at the row reduced
entries in the table then provide specific relationships between @stem matrixJ and observing the degree of freedom of the sys-
elements of the Corresponding row and column. tem and the dependencies between the variables.

As can be seen, there are four subsections of the table correThe number of dependent constraints in the total constraint
sponding to four categories of constraint equations between pgguations is the number of zero rows in the row reduced system
ticular elementgblock-block, block-pulley, cable-block, cablepul-matrix U. Thus the degree of freedom of the system is the number
ley). Within each subsection the following entries identifyof non-zero columns not counting the columns of the identity
constraints. matrix portion in the row reduced system mattdx The variables
in the column vectox which correspond to these non-zero col-
umns in the row reduced system matdxare chosen as the input
variables. Thus it is desirable to move the columns corresponding
| sliding in Y direction (constrained irX direction to the variables which are desired to be used as the inputs to the

+ no relative motiononly used on the diagonal of the bIock-IaZt c:_)lunmnrs In thg”?ysftﬁlm r_?‘atm( l;}efcg(e gqe%'n;'nﬁ theﬂr}qw
block subsection indicating the constraint between the sarffg?uction process. The foflowing exa Kiexample 2 shows this

(a) Block-Block Subsection (indicate constraints between
blocks
— sliding in X direction (constrained inY direction

block) procedure in detail.
Among the output variables, the variables for stationary ele-
Table 1 Format of a configuration table ments(constantsare not interesting since their change in position
is always zero. We are not interested in the pulley position vari-
B B B P P ables either since pulleys are always connected to blocks, and thus
1 2 3 1 2 ; i ; ;
the change in position of the pulleys are always identical to those
B1 of the blocks they are attached to. The rest of the output variables
B are the “variables of interest(nonconstant, nonredundant output
- variables and we choose to show only the relationship between
B3 these “variables of interest” and the input variables as the results.
C1 The procedure to analyze cable pulley systems can be summa-
C rized as follows:
2
* Number the blocks, pulleys, and cable nodes.
C pulley
2 » Generate the configuration table based on the connections
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(sliding constraints between blocks, pulleys attached to B

1
blocks, cables attached to blocks in which direction, cable is 7 %

wound over pulley.

» Using the configuration table write constraint equations be-
tween blocks, between blocks and pulleys, between cable
nodes and blocks, and between cable nodes and pulleys.

Choose a ground block.

(system matrixA)

« Choose potential input variables and move the columns cor-
responding to these input variables to the last columns in the

system matrixA.

* Row reduce system matrik (row reduced system matriy)
to determine the number of independent constraints and the

number of inputs.

» Use the row reduced system mattixto identify output vari-

able relationships to input variables.

4 Examples

Put the constraint equations into matrix forrAx=0

Ci@ " 19
% B, | i
7 . @ Cs
% ?
o ?
7 7
o 4
7 7
Y
=

AY;s

To demonstrate the proposed method, three cable-pulley

mechanisms are analyzed.

Fig. 6 Example 1

4.1 Example 1. For this example, a single degree of free-

dom mechanism with an open-ended cable which only moves in
the Y direction is considered as shown in Fig. 6. The mechanism is
simple enough to figure out the motion relationship between the
elements by inspection. The mechanism is composed of two pul-
leys, three blocks and a single open-ended cable. Block 1 is the B
ground and block 3 is considered as input. As the input block is L
pulled down, it can be easily seen that block 2 will move up half B2

the amount.

Following the procedure, the configuration table is constructed
as shown in Table 2. Note that the upper left part of the configu- C1
ration table(block-block subsectionvhich shows the sliding con-
straint relationship between the blocks is always symmetric, and

it's diagonal elements are always a".

Table 2 Configuration table for example 1

B i85 10 1P
| | .

<=~ |+ |

C, Y+ | Y-

From the configuration table, the constraint equations are set
up. For this mechanism, there are 14 equations and 15 variables.
There are 2 equations to describe the ground block, and the rest of
the equations correspond to the four subsections of the configura-

tion table respectively.

(a) Ground Block Equations
AXg;=0
AYg,=0
(b) Block Sliding Constraint Equations
AXgr=AXg,
AXpz=AXp;
(c) Pulley-Block Attachment Constraint Equations
AXp1=AXg,
AYp =AYg,
AXpa=AXg;
AYp,=AYg
(d) Cable-Block Connection Constraint Equations

ALC].:AYB:L

336 / Vol. 125, JUNE 2003

Alcs=AYp3
(e) Cable Node-Pulley Constraint Equations
ALci=AYp;—rp1Afpy
ALco=AYp+1p1Abpy
ALco=AYpr—rpoAbp,
ALcs=AYpy+1poAbp,

The 14 constraint equations with the 15 variables are put into a
matrix equation form of

AX=0 (1)

whereA is the 14 by 15 system matrix amxds the column vector
with the 15 variables. The order of the columns in the system
matrix is arbitrary; however, it is convenient to put the column
corresponding to the chosen input variable, in this ca%gs; as

the last column. The degrees of freedom of the system is the
dimension of the row space of the system matniumber of col-
umns of A—rank of A) or the number of non-zero columns not
counting the columns of the identity matrix portion in the row
reduced system matrid. Writing out the matrixA, Eq. (1) be-
comes:
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Downloaded From: http://mechanicaldesign.asmedigital collection.asme.or g/ on 05/02/2015 Terms of Use: http://asme.or g/terms



[ 0 0 0 O 0 0 0 0 0 1 0 0 0 0 0 1
00 0 0 0 0 0 0 0 0O 1 0 0 0 0 fALa\ o)
0000 O O 0 0 0 -1 0 1 0 0 0 ALc, 0
0 0 0 O 0 0 0 0 0 -1 0 0 0 1 0 AX 0
P1
o001 0 O 0O 0 O 0 0 -1 0 0 0 AY py 8
0 0 0 O 1 0 0 0 0 0 0 0 -1 0 0 Abpy 0
0 0 0 O 0 0 1 0 0 -1 0 0 0 0 0 AXp, 0
NN @
0 0 0 O 0 0 0 1 0 0 -1 0 0 0 0 Af 0
P2 0
1 0 0 O 0 0 0 0 0 0 -1 0 0 0 0 AXp, 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0o -1 AYp 0
1 0 0 0 -1 Fpl 0 0 0 0 0 0 0 0 0 i);f‘z 0
0100 -1 —r,, 0 0 0 0 0 0 0 0 0 AXo 0
0
01 0 0 0 o 0 -1 r, O O 0 0 0 0 \Aym)\/
Lo o1 0 0 0 0 -1 =-r,, O O O 0 0 0 J
The system matriXA is row reduced to an echelon forth and thus
Ux=0 3)
where:
1 0 0 0 0 0000 0 0 O0 O0 0 0 T
01 00000 0 0 0 O0OUO0OTPO
0 0100 00 0 0 0 O0O0O0OTO0 -1
0 001 000 O 0 O0OOUOUOTUO O
1
0 0001 00 0 O0OOUOUOTDO 5
1
0 00001 00 0 0 O0O0OO0OTO0 —
2"}71
1 0 0
U=
-1
0 000 00O O1 0O0O0OO0OTO0 —
l'pz
0 0
1 0
0 0
1
0 000 00O OO O OOTUOTI1O0 3
| 0 0 0 0 0O 0OO 0 0 0 0 01 0 |
I
Now the displacement equations of the variables with respect to AbOp1=(—1/2rp;)AYps
the input variable can be obtained.
The dimension of the row space, or the number of nonzero Abpy=(1lrpy)AYgs
columns not counting the columns of the identity matrix portion in (c) Cable Node Position
the row reduced system matrix is one, thus the degree of free- ALoe —AY
c2— B3

dom of the system is one as expected. With the input variable
chosen as\Ygs, the displacement equations for the variables of ALcz=AYg3

interest are shown as the following: )
4.2 Example 2. For the second example, a single degree of

(@) Block Position freedom mechanism with an open-ended cable which moves both

_(_ in the X and Y direction is considered as shown in Fig. 7. The
AYgr=(—1/2)AYpg; AT X . . .
mechanism is simple enough to figure out the motion relationship
AYgs=input between the elements by inspection. The mechanism is composed
of two pulleys, three blocks and a single open-ended cable with
(b) Pulley Rotation block 1 as the ground. First, the position of block 3 in tie
Journal of Mechanical Design JUNE 2003, Vol. 125 / 337
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AYs;

Table 3 Configuration table for example 2

B, |B, |B, |P P,
B, |+ —
B, |- + | .
B, | + .
£ | X X+
C, Y Y-
C, Y+ | Y+

AXg2=(—2)AYps3
AXgz=(—2)AYg3
AYgz=input
Abp;=(2/rp1)AYg3
Abpy=(1Irpy)AYgs
ALcs=2AYgs

direction is considered as input. As the inghtock 3 is pulled ¢ \he gisplacement equations with a different input variable
up, it can be easily seen that block 2 will move to the left twicg e needed, the system matrix is rearranged such that the column
the amount. Then, another variable will be chosen as input {3 responding to the new input variable becomes the last column
demonstrate the column interchange strategy for obtaining the &-ihe new system matrix. The matrix equation with the row

lationships between the variables and various inputs. reduced system matrid with A 6p, chosen as input is shown in
Following the procedure, the configuration table is construct ().

as shown in Table 3. Note that block 1 and block 2 can slide in the . )
X direction relative to each other. Also cable node 1 is connected - -

to block 1 in theX direction, and wraps around pulley 1 in tKe \

Fig. 7 Example 2

direction.

The constraint equations then are set up from the configuration .
table. For this mechanism, there are 14 equations and 15 vari- I C; |1 I 0 (6)
ables. There are 2 equations to describe the ground block, and the :
rest of the equations correspond to the four subsections of the
configuration table respectively.

The 14 constraint equations with the 15 variables are put into a
matrix equation formAx=0 where A is the 14 by 15 system - - _A6p2‘
matrix andx is the column vector with the 15 variables. The
system matrixA is then row reduced to an echelon fott and From this, the displacement equations for the variables of inter-
now the displacement equations of the variables with respect@st are shown as the following:

the desired input variable can be obtained. The dimension of the AXgy=(—2)rpyA B

. B2 P28 Up2
row space, or the number of nonzero columns not counting the
columns of the identity matrix portion in the row reduced system AXg3=(—2)rpoAbp,

matrix U is one, thus the degree of freedom of the system is one

as expected. The matrix equation with the row reduced system AYes=Tp2A Op

matrix U with AYgs as the input is shown in Ed5). Note that Abp1=(2rpp /T p1)Abpy
the chosen input variable\Ygs; is the last element in the .

column vectorx and the column corresponding to this variable A Opp=input

is the nonzero columiilast column in the row reduced system ALcs=2r poA Op,
matrix U.

These sets of results for different input variables can be ob-
tained from one another by simply manipulating the set of equa-
- - : tions for any chosen input variable. However, as the mechanism

: gets complex and equations coupled, obtaining results for differ-
: ent input variables by simple equation manipulation becomes dif-
: ficult as will be shown in the third example. Thus the column
1 c | L= 0 (5) interchange method shown is preferred for obtaining displacement
1 equations for different variables.

\ : 4.3 Example 3. The last example shown in Fig. 8 is a
: closed loop(endless cablemechanism with 10 pulleys and 3
L 411AY,, blocks where block 3 can be moved both in handY direction

. / independently. It is quite complicated such that it is not so easy to
figure out the relationship between the variables by inspection. It

With the input variable chosen &sYg3, from the matrix equa- is a three degree of freedom systéas will be shown by the
tion with the row reduced system matrikq. (5)), the displace- method later and the choice of the allowable three independent
ment equations for the variables of interest are as shown: input variables is not so obvious. The twist in the second pulley is
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Fig. 8 Example 3

just to demonstrate one of the different cable winding possibili- (c) Pulley-Block Attachment Constraint Equations
ties. This mechanism might be used as a base for a three degree of PulleysP,, P,, Pg and P, are constrained to blocB;

freedom planar positioning device or a CSHI. (8 equations

Following the procedure, the configuration table is constructed PulleysP5, Pg, Pg and Py, are constrained to blocB,
as shown in Table 4. Note that since it is a closed |gamdless (8 equations
cable, there are no cable-block connections. Also note that 4 pul- Pulleys P, and P4 are constrained to blocB; (4 equa-

leys are attached to block 1, 4 pulleys are attached to block 2, and  tions).

2 pulleys are attached to block 3 and thus their motions are con{d) Cable-Block Connection Constraint Equations
strained by the motion of that block respectively. From the con- No equations since it is a closed loggndless cable
figuration table, the constraint equations are set up. There are 2e) Cable Node-Pulley Constraint Equations
equations to describe the ground block, and the rest of the equa-

tions correspond to the four subsections of the configuration table

respectably.
(a) Ground Block Equations ALc1=AXp1—rp1Abp,
AXBl:O
AY51:O
- . . ALci=AXpa+1p2A bpy
(b) Block Sliding Constraint Equations
AXBZZAXB]_
AYg3=AYg ALc2=AYp2—IpoAbpy
Table 4 Configuration table for example 3
B, B, B, P, P P, P, P Pg P Py P Py
B, |+ | . . . .
B, | + . . . .
B, E . .
C, X- | X+
£ Y- | Y+
C, X+ | X-
C, X+ | X-
C, Y+ | Y+
(e X+ | X+
& Y- [ Y-
Ce X- | X+
€, X- | X+
e Y- Y-
Journal of Mechanical Design JUNE 2003, Vol. 125 / 339
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ALco=AYp3+rp3Abps A6py=(—Tp10/Tp2) Abp1ot (1/rpa) AYp3

ALca=AXp3+Tp3Abps AOp3=(rp1o/rp3)AOpigt (—2/rp3)AYps
ALc3=AXps—IpsAfp, AOps=(—Tp10/Tpa) AOp1ot (Lrpy) AXps+(2/r ps) AY g3
ALcs=AXps+ T psAbpy A Ops=(rp10/Tps)A Op1ot (= 2/r ps) AXpg+ (— 2/rp5) AYp3
ALcs=AXps— I psA Ops AOpe=(rp10/Tpe) A Op1ot (—2/rpg) AXpz+ (— 1 pg) AY g3
ALcs=AYps+IpsAbps AOp7=(rp10/Tp7) A Op1ot (— 2/ p7) AXpg+ (= 1rp7)AYp3
ALcs=AYpgtTpsAbpg A Opg=(rp10/Tpg) A Op1gt (—2/r pg) AXps
ALce=AXpg+ I pgA Opg A Opg=(—Tp10/Ipg) A Op1ot (1/r pg) AXps3
ALce=AXp7+1p7A Opy Afpyo=input C

(c) Cable Node Position
ALci=—Tp1oA Op1ot AYes
ALco=rp1oAbfp1o— AYp3
ALca=Tp1oA Op1o—2AYp3
ALcs=—Trp1oA Op1ot 2AXg3+2AYp;
ALcs=rp1oAOp1o— 2AXp3—~AYps3
ALce=rp1oAOp10— 2AXp3—AYp3
ALc7=—rp1oAOp1ot 2AXp3+AYps
ALcg= ~Trp10A Op1ot 2AXp3

ALc7=AYp7—Tp7Abpy
ALc7=AYpg—TpgAbpg
ALcg=AXpg—IpgA bpg
ALcg=AXpgtIpgA Opg
ALco=AXpg—TIpol Opg
ALco=AXp1otrp10A Op1o
ALc10=AYp10~Ip10A Op10
Alc1o=AYp1—Tp1Abp;

The 44 constraint equations with the 46 variables are put into a

matrix equation form wherd is the 44 by 46 system matrix and ALco=Tp10A Op1o

X is the column vector with the 46 variables; however, the sys- ALcig= — T piod Oppot AY

tem’s degrees of freedom is not two. Note that the last row in the clo P10=7P10 B3

system matrixA becomes all zeroes after row reduction thus in- 4,32 Results (as the Forward Kinematic Solution of a Planar

dicating a dependent constraint equation exists and resulting ilRghot). If one is interested in this mechanism as a planar posi-

three degree of freedom system as shown in(Eq If the desired  tioning table or a cable suspended robot, the three input variables

inputs are known in advance, the system matrix is rearranged s@uild be A 6p;, A6p7, ABpyo in pulleys 1, 7, and 10, for ex-

that the columns corresponding to the desired input variables Rgnple, and the output would be the position of block 3

come the last columns in the system matrix. The system matrix(AXg,,AYg3) and the orientation of either pulleyA@p, or

is then row reduced to an echelon fotin and now the displace- A g,4) on that block.

ment equations of the variables with respect to the desired inputThe system matriA is rearranged such that the three columns

variables can be obtained from colum@, C,, and C3 as corresponding to the new input variabl&®p;, Afp;, Afpig

shown in Eq(7). become the last three columns in the new system matrix. The

- - system matrix is then row reduced to an echelon faflnand the
displacement equations of the variables of interest with respect to

\ these new input variables are obtained.

(a) Block Position
I C, GG

U= @ AYgr=—Tp1Abp1+1p10Abpg

AXg3=(rp1/2)AO0p1— (rp7/2) A Opy
AYBQ,: _rplA 0p1+rploA 0P10
— 0 (b) Pulley Rotation
Afp,=input A

4.3.1 Results. The following results are with the default in-
put variablesA p1o, AXgz, AYgs. Due to the complexity of the AbOpr=(—Tp1/rp2)AOpy
mechanism, some of the results shown below are not so obvious _
and are difficult to derive by inspection. Abpa=(2rp1/rp3)Abp1+(—Tp1o/Tp3)Abpig

(a) Block Position AOpy=(—3rp1/2rpg) AOpy— (I p7/2r pg) A Op7+ (T p10/ T pa) A Opag
AYgy=AYg3 AOps=(rp1/1ps)AOp1+ (Ip7/1ps)AOp7—(rp1o/T ps) A Opig
AXgz=input B ABOpg=(rp7/rpg)Abpy
AYgsz=input A A6p,=input B
(b) Pulley Rotation Abpg=(—Trp1/rpg)Abp1+ (rp7/Tpg)Abp7+ (rp1o/rpg) A bpig
Abp1=(Tp1o/Tp1)AbGp1ot (—Lrp1)AYps Abpg=(rp1/2rpg) AOp1— (rp7/2r pg) A Op7—(I'p10/T po) A Bp1g
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ABpg=input C topology of the system and to identify the constraint equations by
systematically defining the connections between the elements

4.3.3 Results (as the Inverse Kinematic Solution of a Plangtables, pulleys, and blocksThese constraint equations are then

Robot). If one is interested in this mechanism as a cable sugut into a matrix equation form called the system matrix. A row
pended robot, the three input variables could be the position @fduction process on this system matrix identifies the number of
block 3 (AXg3,AYg3) and the orientation of pulley 4X(¢p,) and inputs and generates the relationships of each variable to the in-
the 3 output variablea fp,, A fp7, Afpyipcould be solved for as put(s). The number of input variables or the degrees of freedom of
the three variables for the actuated joints for example. Note thatfie system is the dimension of the row space of the system matrix.
is difficult to obtain the following set of resultévith Afp,,  Results with different set of input variables can be easily obtained
AXgs, AYgg as the inputby simple equation manipulation of theby a simple column interchange process on the system matrix.
forward kinematic solution resultvith Afp,, Afp7, ABpigas This simple analysis method provides insight to the motion of
the inpu} shown previously. complex cable-pulley systems and thus is invaluable for the syn-
(a) Block Position thesis of new types of complex cable-pulley configurations for
new and exciting applications. However, the method can only

AYgr=AYp3 handle cases when the cables are either inktde&ection or theY

direction, and the orientation of the cables do not change. A more

AXgg=input B general case where the cables can change their orientation is left
AYgz=input A as future work.
(b) Pulley Rotation
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