
Compliant Locomotion Using Whole-Body Control and
Divergent Component of Motion Tracking

Michael A. Hopkins †, Dennis W. Hong ‡, and Alexander Leonessa †*

Abstract— This paper presents a compliant locomotion
framework for torque-controlled humanoids using model-based
whole-body control. In order to stabilize the centroidal dy-
namics during locomotion, we compute linear momentum rate
of change objectives using a novel time-varying controller
for the Divergent Component of Motion (DCM). Task-space
objectives, including the desired momentum rate of change, are
tracked using an efficient quadratic program formulation that
computes optimal joint torque setpoints given frictional contact
constraints and joint position / torque limits. In order to validate
the effectiveness of the proposed approach, we demonstrate
push recovery and compliant walking using THOR, a 34 DOF
humanoid with series elastic actuation. We discuss details
leading to the successful implementation of optimization-based
whole-body control on our hardware platform, including the
design of a “simple” joint impedance controller that introduces
inner-loop velocity feedback into the actuator force controller.

I. INTRODUCTION

Torque-controlled bipeds and quadrupeds are becoming
increasingly prevalent as researchers attempt to mimic the
speed and adaptability of locomotion behaviors found in
nature [1–7]. This has created an interest in compliant
locomotion strategies and inverse dynamics approaches that
are robust to the unexpected forces and unmodeled dynamics
encountered by hardware systems operating in real environ-
ments. The problem is further complicated in the field of
humanoid robotics, where whole-body control is required
to implement multi-objective behaviors such as maintaining
balance while aiming a fire hose or operating a drill.

A number of researchers have proposed convex optimiza-
tion techniques to solve the inverse dynamics and whole-
body control problem subject to multi-contact constraints [8–
15]. These approaches compute joint torque setpoints that
minimize tracking errors for multiple motion tasks including
desired momentum rates of change, end-effector accelera-
tions, and joint accelerations relating to whole-body motions.
In general, these formulations can serve as the basis for any
locomotion, manipulation, or generic multi-contact behavior.

Implementing model-based whole-body control on real
hardware platforms is exceptionally challenging due to nu-
merous issues arising from communication delays, actuator
stiction, mechanical bias, structural compliance, and a va-
riety of electromechanical phenomena. In [11], the authors
demonstrated successful balancing using hierarchical inverse
dynamics on a purely torque-controlled biped. However,
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most implementations have required some form of joint-
space position and / or velocity feedback to compensate
for unmodeled dynamics. As an example, a hybrid inverse
kinematics and inverse dynamics controller was implemented
in [13] to achieve successful locomotion on the Atlas robot
using PD feedback in conjunction with torque control.

Dynamic balancing is typically implemented through the
design of feedback controllers to stabilize the robot’s cen-
troidal dynamics. This is made possible through control
of the robot’s centroidal momentum rate of change via
direct optimization of external contact forces. Several authors
implement Cartesian PD controllers to track desired center
of mass (CoM) trajectories using linear momentum rate of
change objectives [9, 11, 12]. In [15], the authors proposed
an efficient quadratic program (QP) that minimizes a time-
varying LQR cost function based on the Zero Moment Point
(ZMP) dynamics subject to the inverse dynamics constraints.

In [16], the authors introduced the Capture Point (CP)
transformation which allows the horizontal centroidal dy-
namics to be stabilized using a simple CMP-based control
law [17, 18]. As shown in [19], this controller is equivalent
to the best CoM-ZMP regulator [20], known to maximize the
horizontal stability margins for CoM tracking. In [10], CP
tracking was implemented using a momentum-based whole-
body controller, and in [21], the authors introduced the
three-dimensional Divergent Component of Motion (DCM),
which constitutes an extension of the CP transformation that
simplifies locomotion planning and control on uneven terrain.

This paper presents an implementation of optimization-
based whole-body control and compliant locomotion on a
new torque-controlled humanoid, THOR [22]. Inspired by
the work of [10] and [11], we propose an efficient quadratic
program formulation to solve the inverse dynamics problem
given frictional contact constraints and joint position / torque
limits. The centroidal dynamics are stabilized using a novel
momentum controller based on the time-varying DCM dy-
namics, implemented for the first time on hardware. These
components are assembled into a general framework for
compliant locomotion on uneven terrain.

Successful whole-body control of the THOR hardware
platform is achieved using a “simple” joint impedance con-
troller that combines high performance torque control with
low-gain velocity feedback. To improve the stability of the
presented inverse dynamics-based approach, joint velocity
setpoints are computed from the optimized joint accelerations
and tracked using pre-transmission velocity estimates. The
proposed framework is validated through push recovery and
compliant walking experiments on the THOR platform.



II. DIVERGENT COMPONENT OF MOTION TRACKING

In this section, we present an approach to stabilize the
linear centroidal dynamics during locomotion by tracking a
reference trajectory for the time-varying Divergent Compo-
nent of Motion (DCM). The three-dimensional DCM, ξ =
x + 1

ω0
ẋ, is a linear transformation of the CoM state that

divides the linear CoM dynamics into stable and unstable
first-order components where ω0 =

√
g

∆z represents the
natural frequency of the linear inverted pendulum [21, 23].
For a constant CoM height, ∆z, the horizontal projection
of the DCM is equivalent to the two-dimensional Capture
Point (CP) [16], defined as the point at which the Centroidal
Moment Pivot (CMP) [24] must be placed at any time to
allow the CoM to come to a complete rest. In [25], we
proposed a time-varying extension of the three-dimensional
DCM to simplify dynamic planning and control of vertical
CoM trajectories. Here we briefly summarize those results.

A. Time-Varying DCM Dynamics

The time-varying Divergent Component of Motion is
defined as

ξ = x +
1

ω(t)
ẋ, (1)

where x = [xcom, ycom, zcom ]
T is the CoM position, ẋ is

the CoM velocity, and ω(t) > 0 is the time-varying natural
frequency of the DCM. Solving (1) for ẋ yields the first-
order CoM dynamics,

ẋ = ω(ξ − x), (2)

where we have introduced the relaxed notation, ω := ω(t),
omitting the natural frequency’s explicit dependence on time.
The CoM dynamics are asymptotically stable with respect
to an equilibrium point at ξ. Thus, the linear centroidal
dynamics can be indirectly stabilized by regulating the DCM.

Differentiating (1) and substituting (2) gives

ξ̇= ẋ− ω̇

ω2
ẋ +

1

ω
ẍ

=

(
1− ω̇

ω2

)
ẋ +

1

ω
ẍ

=

(
ω − ω̇

ω

)
(ξ − x) +

1

mω
l̇

=

(
ω − ω̇

ω

)(
ξ −

(
x− l̇

m (ω2 − ω̇)

))
,

where m is the total mass of the robot and l̇ ∈ R3 is the
linear momentum rate of change. Here we have substituted
ẍ = 1

m l̇ using Newton’s second law. By defining the Virtual
Repellent Point (VRP) [21] in terms of the CoM and linear
momentum rate of change,

rvrp = x− l̇

m (ω2 − ω̇)
, (3)

we can derive first-order equations of motion for the DCM,

ξ̇ =

(
ω − ω̇

ω

)
(ξ − rvrp) . (4)

Fig. 1. Left: Time-varying DCM dynamics. Right: Centroidal dynamics.

First introduced in [21], the VRP represents the unstable
equilibrium point of the DCM dynamics and can be viewed
as a three-dimensional analog to the CMP. To see this, note
that the linear momentum rate of change is given by l̇ =∑

f c − mg where g = [ 0 0 g ]
T is the gravity vector and

f c are the contact forces. Thus, we can express the VRP in
terms of the external forces,

rvrp = x−
∑

f c −mg

m (ω2 − ω̇)
= recmp +

g

ω2 − ω̇
, (5)

where

recmp = x−
∑

f c
m (ω2 − ω̇)

(6)

is the time-varying extension of the enhanced Centroidal
Moment Pivot (eCMP) [21].

The eCMP lies on the line passing through the CoM,
parallel to the net contact force,

∑
f c, and is equivalent to

the CMP when it intersects the ground surface. As illustrated
in Fig. 1, the horizontal position of the VRP is equivalent
to the eCMP, while the vertical position varies depending on
the natural frequency trajectory. If the eCMP lies in the base
of support, it is possible to avoid generating a horizontal
moment about the CoM by placing the center of pressure
(CoP) at the eCMP. Thus, through appropriate planning of the
eCMP and DCM reference trajectories, the linear centroidal
dynamics can be stabilized without generating significant
angular momentum during locomotion.

B. Time-Varying DCM Tracking

Assuming ω− ω̇/ω > 0, the time-varying DCM dynamics
can be stabilized by defining an appropriate control law for
the VRP. In [21], Englsberger et al. proposed a proportional
tracking controller for the time-invariant DCM dynamics
assuming ω(t) = ω0, and in [19], Morisawa et al. introduced
integral action into the DCM controller to compensate for
steady-state errors due to model uncertainty.

We define the following control law based on the time-
varying DCM dynamics (4),

rvrp = ξ − 1

ω − ω̇
ω

(
ξ̇r + kξ (ξr − ξ) + kΞ

∫
(ξr − ξ) dt

)
,



where ξr and ξ̇r represent the reference DCM position
and velocity [25]. The first term cancels the DCM drift
dynamics, and the second term implements a proportional-
integral controller with unity feedforward. The non-negative
feedback gains kξ and kΞ determine the bandwidth and
steady-state characteristics of the DCM controller.

III. WHOLE-BODY CONTROL

In this section we present a summary of humanoid dy-
namics and an overview of the proposed optimization-based
whole-body controller implemented on the THOR platform.

A. Humanoid Dynamics

The configuration of an articulated humanoid with n
actuated degrees of freedom (DOF) can be expressed by the
vector, q =

[
qT0 qTn

]T ∈ R6+n, where q0 ∈ R6 encodes
the 6 DOF translation and orientation of the floating-base
frame and qn ∈ Rn represents the n DOF vector of actuated
joint positions. The full rigid-body equations of motion are
given by [

0
τ

]
= H (q) q̈ + C (q, q̇)−

∑
c

JTc f c, (7)

where τ ∈ Rn is the vector of actuated joint torques,
C (q, q̇) is the vector of centrifugal, Coriolis and gravity
torques, H (q) is the joint-space inertia matrix, and Jc and
f c ∈ R3 are the point Jacobians and corresponding reaction
forces at each contact point, rc ∈ R3 [26]. Here we define
the contact subscript, c = 1 : N , given N frictional contact
points.

Alternatively, the centroidal dynamics define the re-
duced equations of motion for the center of mass, x =
[xcom, ycom, zcom ]

T , and linear and angular momentum of
the system, l ∈ R3 and k ∈ R3, as illustrated in Fig. 1. The
total momentum rate of change of the robot is given by

ḣ =

[
l̇
k̇

]
=
∑
c

Wcf c + wg, (8)

where Wc ∈ R6×3 maps contact forces to wrenches acting
about the CoM and wg = [ 0, 0,−mg, 0, 0, 0 ]

T encodes the
force of gravity [9, 10]. The momentum rate of change
is related to the joint velocities and accelerations by the
equality,

ḣ = Ȧq̇ + Aq̈, (9)

where A represents the centroidal momentum matrix [27].

B. Task-Space Formulation

Arbitrary motion tasks such as the acceleration of a
Cartesian frame or contact point can be expressed as

v̇t = J̇tq̇ + Jtq̈, (10)

where Jt is the associated task-space Jacobian matrix. In
this work, we model contact points using Coulomb friction
and linear acceleration constraints, i.e. v̇c = 0. Tipping
and slipping of supporting surfaces is avoided by ensuring
that reaction forces at each contact point remain inside the

Fig. 2. Friction cone and friction pyramid approximations for foot contacts.

corresponding friction cone, i.e. f c ∈ Cc [28], as illustrated
in Fig. 2.

As in [9, 10, 15, 29], we employ a polyhedral approxi-
mation of the friction cone, Pc ⊂ Cc, at each contact point,
c = 1 : N , allowing contact forces to be computed using a
linear generating function,

f c = βcρc. (11)

Here the columns of βc ∈ R3×4 are unilateral bases that
span the volume of admissible forces in inertial coordinates,
and ρc ∈ R4 is a vector of non-negative coefficients to be
determined via the whole-body controller.

C. Model-Based Optimization (Quadratic Program)

Given multiple motion tasks, v̇t, the goal of whole-
body control is to compute joint torques, τ , that minimize
the tracking error for each task while satisfying dynamic
constraints including available control authority, range of
motion, and limits on the frictional contact forces. Motion
tasks may include desired momentum rates of change, spatial
accelerations of coordinate frames attached to individual
links, or joint-space accelerations computed using an ar-
bitrary high-level controller. Inspired by the work of [10]
and [11], the proposed whole-body controller optimizes
desired joint accelerations, q̈, and generalized contact forces,
ρ =

[
ρT1 . . . ρTN

]T
, using a linearly constrained quadratic

program (QP) in the form,

min
q̈,ρ

∥∥∥Cb

(
b− J̇q̇− Jq̈

)∥∥∥2

+ λq̈‖q̈‖2 + λρ‖ρ‖2 (12)

subject to

Ȧq̇ + Aq̈ =
∑
c

Wcf c + wg (13)

¯
q ≤ q + T q̇ +

1

2
T 2q̈ ≤ q̄ (14)

¯
τ ≤ τ ≤ τ̄ (15)
0 ≤ ρ, (16)

where b is the vector of desired motion tasks and J is the
corresponding matrix of stacked Jacobians, i.e.

b =


ḣd
q̈d
v̇d1

...

 , J =


A
I
J1
...

 . (17)

The QP cost function and constraint equations are described
in the subsections below.



D. Optimization Costs
The cost function (12) is designed to minimize the

weighted quadratic error of the task-space objectives, b,
given a semi-positive definite weighting matrix, Qb =
CT
b Cb. Joint acceleration and contact force regularization

terms are also included to ensure that the QP is strictly con-
vex given λq̈, λρ > 0. The weighting matrix allows soft pri-
oritization of motion tasks depending on the current behavior.
High weights are assigned to contact acceleration objectives
to approximate no slip conditions, thereby ensuring contact
points remain stationary relative to support surfaces, while
low weights are often assigned to angular momentum rate of
change objectives to improve dynamic stability by permitting
large restoring forces and accelerations that induce moments
about the CoM. Although this approach does not allow a
strict hierarchy of task prioritizations as in [11, 12], we have
found that highly-weighted costs can be more forgiving than
hard constraints in scenarios where one or more tasks are
ill-conditioned.

E. Optimization Constraints
Constraints (13)-(16) are linear in the decision variables

and ensure admissibility of the optimized joint accelerations
and contact forces. Equation (13) follows from (8) and (9)
and enforces the centroidal dynamic constraints [10]. The
final inequality (16) enforces Coulomb friction constraints
at each contact point. As proposed in [14], joint range of
motion constraints are implemented using (14) where

¯
q and

q̄ represent the joint position limits and T represents a time
constant determining the maximum rate of convergence to
either limit. For the experiments presented in Section V we
use T ≈ 0.15 s.

A number of QP formulations include joint torques, τ , as
additional decision variables to permit explicit torque limits
in the optimization [12–14]. In these approaches, the full
rigid body equations of motion (7) are included as linear
equality constraints. As discussed in [11], it is possible to
eliminate these additional decision variables and constraints
noting that the torque vector is a linear function of the joint
acceleration and contact force vectors. From (7) and (11),
we have[

0
τ

]
=
[
H (q) −

∑
c J

T
c βcSc

] [ q̈
ρ

]
+ C (q, q̇) , (18)

where Sc is a selection matrix that projects ρ to ρc. Joint
torque limits are implemented by substituting the lower
n equations of (18) into (15) where

¯
τ and τ̄ represent

lower and upper torque limits. Admissibility of the joint
torques, joint accelerations, and contact forces is ensured by
the centroidal dynamics constraint (13). This is a departure
from [11] where the floating-base dynamics are constrained
by the upper 6 equations of (7); however, this is an equivalent
formulation that also constrains the net momentum rate of
change.

F. Implementation
At each time step, admissible joint accelerations, q̈a,

and contact forces, ρa, are computed using the proposed

model-based optimization (12). Corresponding joint torque
setpoints, τ a, are computed from (18). The QP is solved
using an Eigen implementation of QuadProg++ which is
based on the active set method described in [30]. The
optimization runs at 800 Hz on an i7 processor with 8 active
contact points and a 30 DOF rigid body model. This enables
real-time whole-body control for tasks such as standing
manipulation and dynamic walking.

IV. COMPLIANT LOCOMOTION

This section provides an overview of the proposed lo-
comotion framework developed using the presented whole-
body controller. For reference, a high-level block diagram is
shown in Fig. 3. Dynamic behaviors such as standing and
stepping are implemented using state machines that respond
to external events such as toe-off and heel-strike. Following
each event, state-specific parameters such as desired end-
effector waypoints and step durations are passed to planning
modules to generate joint-space and task-space trajectories
for dynamic locomotion.

Fig. 3. Control block diagram of locomotion subsystem.

At each time step, desired motion tasks are computed us-
ing DCM, angular momentum, end-effector, and joint-space
tracking controllers. Optimal joint torques are computed
using the whole-body controller framework presented in
Section III, and compliant joint-space control is implemented
to track the resulting joint trajectories. Finally, a Kalman
filter-based state estimator is implemented to compute the
necessary states for whole-body control. The following sub-
sections present a detailed overview of the compliant stand-
ing and stepping behaviors implemented using the proposed
framework. Note that the presented approach can be applied
to a large variety of tasks including climbing, fall recovery,
and whole-body manipulation.

A. Standing

The stand controller enables the robot to maintain balance
in double or single support while tracking upper body joint
trajectories for generic manipulation tasks.



1) Momentum Control: Dynamic balancing is imple-
mented by tracking a DCM reference trajectory, ξr(t), that
nominally lies above the center of the support polygon.
At each time step, the desired VRP position is computed
using the DCM tracking controller defined in Section II-B.
The linear momentum rate of change is then derived from
the VRP definition (3), and the angular momentum rate of
change is computed using a simple damping controller such
that

ḣd =

[
l̇d
k̇d

]
=

[
m
(
ω2 − ω̇

)
(x− rvrp)

−bkk

]
. (19)

The damping coefficient, bk ≥ 0, regulates the total angular
momentum in the system.

2) Upper Body Control: Joint-space acceleration objec-
tives are used to track upper-body joint trajectories. Joint
tracking is achieved using a standard PD controller in the
form,

q̈d = q̈r + kq (qr − q) + bq (q̇r − q̇) , (20)

where qr, q̇r, and q̈r are the reference joint position,
velocity, and acceleration vectors. The PD gains, kq ≥ 0
and bq ≥ 0, can be adjusted online depending on the current
task. The reference trajectories may be specified by an ex-
ternal planner to allow standing manipulation, in which case
high optimization weights are assigned to support accurate
tracking. Low optimization weights may also be assigned to
allow the arms to assist in balancing by generating angular
momentum and / or shifting the center of mass.

3) Lower Body Control: Pelvis and swing foot trajecto-
ries are generated using piecewise 5th order minimum jerk
polynomials based on the desired lower body motion. The
state of each Cartesian frame is expressed by a transform
Xr =

[
Rr rr
0 1

]
, twist vr =

[
ṙTr ωTr

]T
, and spatial

acceleration v̇r =
[
r̈Tr ω̇Tr

]T
. The 6 DOF trajectories are

tracked using a Cartesian PD controller in the form,

v̇d =

[
r̈d
ω̇d

]
=

[
r̈r + Kr (rr − r) + Br (ṙr − ṙ)
ω̇r + KR (θê) + BR (ωr − ω)

]
, (21)

where θê is the axis-angle representation of the rotational
error. Here Kr, KR, Br, and BR are diagonal stiffness and
damping matrices. Note that the pelvis linear accelerations
are uncontrolled to avoid over-constraining the optimization.

B. Stepping

The step controller implements single-step and multi-step
behaviors given desired foothold poses and step durations
from a high-level footstep planner.

1) Trajectory Planning: The DCM reference trajectory is
updated at the onset of each step using the time-varying
DCM planner described in [25]. First, explicit CoP and
vertical CoM trajectories are computed from the desired
foothold poses. Next, reverse-time integration is used to plan
a dynamically feasible DCM trajectory over a multi-step
time horizon satisfying the final boundary conditions. Finally,
Model Predictive Control is used to compute an admissible
reference trajectory over a short preview window satisfying
the initial boundary conditions.

Fig. 4. Step controller state machine.

2) State Machine: The step behavior employs the same
subset of controllers as the stand behavior. However, an
additional finite state machine is implemented to handle
transitions between various contact phases as illustrated in
Fig. 4. During the double support phase, both feet remain
in contact with the support surface. Eight active contact
constraints are added to the whole-body controller opti-
mization corresponding to the four corners of each foot.
Following the preplanned double support duration, the state
machine transitions to the single support phase, breaking
contact with the swing foot and configuring appropriate
optimization weights for swing foot tracking. Heel-strike
events are detected using a force-torque sensor in the sole of
the swing foot. When the swing foot is sufficiently loaded,
the state machine transitions back to double support.

In order to increase the maximum stride length, we adopt
a reactive toe-off strategy to compensate for range of motion
limits. If the measured knee or ankle pitch of the swing leg
reaches a soft position limit during double support, the two
contact points on the heel of the swing foot are shifted to the
toe in order to appropriately bound the center of pressure.
Next the heel contacts are disabled to enable toe-off by
allowing the foot to pivot about the two toe contacts. If the
toe pitch reaches a critical limit, the swing foot tracking
controller is configured to prevent the foot from rotating
further during the double support phase.

C. Low-level control

The proposed whole-body locomotion framework was
tested using THOR, a 1.8 m tall, 60 kg compliant humanoid
designed as part of the DRC (DARPA Robotics Challenge)
and ONR SAFFiR (Shipboard Autonomous Firefighting
Robot) projects [22]. The THOR lower body is equipped with
series elastic actuators and custom motor controllers for low-
gain impedance control [31]. The upper body is equipped
with stiff actuators for high-gain velocity control.

1) Leaky Integrator: We employ a similar approach
to [32] to compute joint velocity setpoints, q̇∗

a, using leaky
integration of the optimized joint accelerations, q̈a. The leaky
integrator dynamics are expressed by the first-order ODE,

q̈∗
a = α (q̇− q̇∗

a) + q̈a, (22)

where q̇∗
a =

∫
q̈∗
a dt. The leaking rate, α ≥ 0, determines

the rate at which the integral drifts towards the estimated ve-
locity. In the experiments presented in the following section,
we use α = 75 for the lower body joints and α = 0 for



the upper body joints to account for the different actuator
impedances.

2) Joint Control: The lower body joint setpoints are
tracked using joint torque control with low-gain velocity
feedback. Joint velocity feedback tends to increase the over-
all stability of the whole-body controller given the unmod-
eled dynamics inherent in real systems. On our platform,
linear series elastic actuators are used to generate net torques
about the robot’s joints via linear to rotary and parallel
mechanisms [33, 34]. The whole-body controller torques,
τ a, and integrated velocity setpoints, q̇∗

a, are updated at 150
Hz and relayed to embedded joint controllers with a sample
rate of 2 kHz. Actuator force control is implemented using
PID feedback with unity feedforward and a model-based
disturbance observer based on spring force measurements
from in-line load cell sensors.

The authors experimented with two variations of “simple”
joint impedance control. The first controller introduces outer-
loop damping based on joint velocity estimates from post-
transmission absolute encoders at the joints. The desired
actuator forces are given by

fa = J−T
` (τ a + bq (γq̇∗

a − q̇)) (23)

where J` is the mechanism Jacobian that maps angular
joint velocities, q̇, to linear actuator velocities, ˙̀ . The joint
damping coefficient bq ≥ 0 determines the velocity feedback
gain, and the scalar γ ∈ [0, 1] biases the joint velocity
setpoint towards zero in order to improve the stability of the
derivative action. If bq = 0, (23) reduces to a simple torque
controller. If γ = 0, the velocity feedback term introduces
viscous damping.

The second controller introduces inner-loop damping
based on actuator velocity estimates from pre-transmission
incremental encoders at the motors, i.e.

fa = J−T
` τ a + b`

(
γ ˙̀∗
a − ˙̀

)
. (24)

In this scenario, joint-space damping is indirectly achieved
by tracking desired linear actuator velocities computed via
forward kinematics, ˙̀∗

a = J`q̇
∗
a. Although the effective joint

damping varies depending on the configuration, this approach
significantly improves the stability of the derivative action,
presumably due to the collocation of the motor and velocity
sensor. In the experiments presented in the following section,
we chose b` = 10000 N/m/s and γ = 0.625.

V. EXPERIMENTAL RESULTS

This section presents experimental results for the proposed
locomotion framework implemented on the THOR hardware
platform [22]. Seen in Fig. 5, THOR features joint position
and velocity sensors for each actuated DOF and an Attitude
and Heading Reference Sensor (AHRS) mounted to the
pelvis to provide inertial orientation, angular velocity, and
linear acceleration measurements. A simple state estimator
is employed to estimate the floating-base pose and twist using
a combination of leg kinematics and inertial measurements.
The locomotion framework utilizes a 30 DOF rigid body
model of the robot obtained from detailed CAD. The state

TABLE I
WHOLE-BODY CONTROLLER WEIGHTS AND GAINS

Motion Task Units Weight Stiffness Damping
l̇ N 10 - -
k̇ Nm 1 0 0
q̈arms rad/s2 6 15 10
q̈waist rad/s2 100 40 20
r̈contact points m/s2 10000 0, 0, 0 0, 0, 0
r̈swing foot m/s2 1000 150, 150, 200 20, 20, 20
ω̇swing foot rad/s2 1000 100, 100, 100 10, 10, 20
ω̇pelvis rad/s2 30 70, 70, 30 30, 30, 15

Fig. 5. THOR balancing on one foot. DCM tracking is used to stabilize
the CoM dynamics following a disturbance impulse applied to the back.

estimator and locomotion controllers operate at 150 Hz on
an i7 computer mounted in the chest.

A comprehensive list of whole-body controller weights
and feedback gains is provided in Table I. This set of
parameters was chosen experimentally to support stand-
ing and stepping behaviors. Although unlisted, integral ac-
tion was included in the swing foot position, swing foot
orientation, and pelvis orientation controllers with inte-
gral gains of diag ( 100, 100, 100 ), diag ( 100, 100, 100 ), and
diag ( 50, 50, 30 ), respectively. For the experiments presented
below, the DCM proportional gain was set to kξ = 2.5 in the
horizontal axes and kξ = 7.5 in the vertical axis. We found
that a higher stiffness in the vertical axis was necessary to
achieve comparable performance due to the effect of gravity.
The DCM integral gain was set to kΞ = 0.75 in order to
compensate for steady-state errors.

A. Balancing

Fig. 5 shows the robot balancing on one foot following
a disturbance force applied to the back. The robot is able
to recover from the unexpected disturbance by pitching its
hip and shoulder joints in order to generate the necessary
reaction forces to stabilize the DCM. This is made feasible
by compliant joint control in the lower body. Low damping
coefficients allow the leg joints to accelerate immediately in
response to the impulse without shifting the CoP to the edge
of the foot.

The controller setpoints and estimates for two consecutive
pushes are shown in Fig. 6. The x-axis of the inertial frame
is oriented to the front of the robot and the y-axis is oriented
to the left. The region between the virtual toe and heel
contacts is marked for reference. The whole-body controller



Fig. 6. Controller response following two disturbance impulses applied to the back of the robot while balancing on the right foot. Here the x-axis is
oriented to the front of the robot and the y-axis is oriented to the left. Admissible values correspond to the outputs of the whole-body QP optimization.

formulation ensures that the optimized CoP setpoint does
not exceed this safety region, thereby preventing the support
foot from tipping by satisfying the ZMP criterion. The VRP
setpoint, however, is allowed to leave the base of support in
order to stabilize the DCM dynamics.

Note that, given the relatively low weight of the arm
acceleration objectives, the left shoulder pitch joint diverges
significantly from the desired reference trajectory to generate
the necessary spin angular momentum. In this scenario, the
shoulder reference trajectory is determined by a heuristic
based on the rotation of the hip joint. Contrarily, the high
weights of the swing foot acceleration objectives allow accu-
rate reference tracking throughout the disturbance. Once the
linear dynamics are stabilized, the pelvis and arm objectives
dominate, allowing the robot to return to its original pose.

B. Walking

Fig. 7 shows the desired and estimated DCM and VRP
signals for continuous walking with a step duration of 3.5
s, stride length of 0.175 m, and swing foot apex of 0.09 m.
The robot is able to accurately track the DCM and swing foot
reference trajectories on flat terrain. Although the proposed
framework is designed to support dynamic locomotion on
uneven terrain as discussed in [25], we are currently limited
by the available knee torque in the THOR platform. We are in
the process of performing the necessary hardware upgrades
to support rough terrain locomotion.

C. Robustness to Unmodeled Terrain

The use of compliant joint control in the lower body
results in behaviors that are inherently robust to uncertain and
unstable terrain. Fig. 8 shows the robot standing and stepping
onto various terrain, initially modeled as a flat surface. In
the leftmost image, the robot stands on a balance board that
rotates about a pivot, and in the images to the right, the
robot steps onto unexpected debris. In each scenario, the
controller is able to safely adapt to uncertain terrain using
low-impedance task-space feedback. Note that the control
gains and optimization weights are identical in each trial.

Fig. 7. Estimated and reference DCM and VRP trajectories while walking
on flat terrain using the THOR hardware platform.

VI. CONCLUSION

This paper demonstrated successful balancing and walking
on a torque-controlled humanoid using optimization-based
whole-body control and a momentum controller based on
the time-varying Divergent Component of Motion. The in-
troduction of low-gain joint velocity feedback using leaky
integration of the optimized joint accelerations enabled ac-
curate tracking of the task-space objectives using compliant
joint-space control. Future research efforts will focus on
the application of adaptive control algorithms for dynamic
step recovery. We are also investigating improved joint-space
torque control approaches using a novel model for linear
series elastic actuators.
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Fig. 8. Left: THOR standing on a balance board that rotates about a pivot.
Right: Stepping onto unexpected debris and adapting to the terrain.

We would like to thank Derek Lahr, Viktor Orekhov, and
Robert Griffin for their discussions on dynamics and controls.
We would also like to thank Bryce Lee, Coleman Knabe,
Steve Ressler, Jacob Webb, Jack Newton, and the remaining
team members who contributed to the design of THOR.

REFERENCES
[1] J. Pratt and B. Krupp, “Design of a bipedal walking robot,” in Society

of Photo-Optical Instrumentation Engineers (SPIE) Conference Series,
vol. 6962, Apr. 2008.

[2] J. Englsberger, A. Werner, C. Ott, B. Henze, M. A. Roa, G. Garofalo,
R. Burger, A. Beyer, O. Eiberger, K. Schmid, and A. Albu-Schffer,
“Overview of the torque-controlled humanoid robot TORO,” in Hu-
manoid Robots (Humanoids), 14th IEEE-RAS International Confer-
ence on, Nov 2014.

[3] C. Semini, N. G. Tsagarakis, E. Guglielmino, M. Focchi, F. Cannella,
and D. G. Caldwell, “Design of HyQ - a hydraulically and electrically
actuated quadruped robot,” Journal of Systems and Control Engineer-
ing, vol. 225, no. 6, pp. 831–849, 2011.

[4] M. Hutter, C. Gehring, M. Bloesch, M. Hoepflinger, C. D. Remy,
and R. Siegwart, “StarlETH: A compliant quadrupedal robot for fast,
efficient, and versatile locomotion,” in 15th International Conference
on Climbing and Walking Robot (CLAWAR), 2012.

[5] N. Tsagarakis, S. Morfey, G. Cerda, L. Zhibin, and D. Caldwell,
“COMpliant huMANoid COMAN: Optimal joint stiffness tuning for
modal frequency control,” in Robotics and Automation (ICRA), IEEE
International Conference on, May 2013, pp. 673–678.

[6] M. Slovich, N. Paine, K. Kemper, A. Metger, A. Edinger, J. Weber,
and L. Sentis, “Building HUME: A bipedal robot for human-centered
hyper-agility,” in Dynamic Walking Meeting, 2012.

[7] D. Lahr, V. Orekhov, B. Lee, and D. Hong, “Development of a
parallely actuated humanoid, SAFFiR,” in ASME International Design
Engineering Technical Conference, 2013.

[8] M. de Lasa and A. Hertzmann, “Prioritized optimization for task-
space control,” in Intelligent Robots and Systems (IROS), IEEE/RSJ
International Conference on, Oct 2009, pp. 5755–5762.

[9] S.-H. Lee and A. Goswami, “Ground reaction force control at each
foot: A momentum-based humanoid balance controller for non-level
and non-stationary ground,” in Intelligent Robots and Systems (IROS),
IEEE/RSJ International Conference on, Oct 2010, pp. 3157–3162.

[10] T. Koolen, J. Smith, G. Thomas, S. Bertrand, J. Carff, N. Mertins,
D. Stephen, P. Abeles, J. Englsberger, S. McCrory, J. van Egmond,
M. Griffioen, M. Floyd, S. Kobus, N. Manor, S. Alsheikh, D. Duran,
L. Bunch, E. Morphis, L. Colasanto, K.-L. Ho Hoang, B. Layton,
P. Neuhaus, M. Johnson, and J. Pratt, “Summary of team IHMC’s
virtual robotics challenge entry,” in Humanoid Robots (Humanoids),
13th IEEE-RAS International Conference on, Oct 2013.

[11] A. Herzog, L. Righetti, F. Grimminger, P. Pastor, and S. Schaal,
“Experiments with a hierarchical inverse dynamics controller on a
torque-controlled humanoid,” arXiv preprint arXiv:1305.2042, 2013.

[12] P. M. Wensing and D. E. Orin, “Generation of dynamic humanoid
behaviors through task-space control with conic optimization,” in
Robotics and Automation (ICRA), IEEE International Conference on,
May 2013, pp. 3103–3109.

[13] S. Feng, E. Whitman, X. Xinjilefu, and C. G. Atkeson, “Optimization
based full body control for the Atlas robot,” in Humanoid Robots
(Humanoids), 14th IEEE-RAS International Conference on, Nov 2014.

[14] L. Saab, O. Ramos, F. Keith, N. Mansard, P. Soueres, and J. Fourquet,
“Dynamic whole-body motion generation under rigid contacts and

other unilateral constraints,” Robotics, IEEE Transactions on, vol. 29,
no. 2, pp. 346–362, April 2013.

[15] S. Kuindersma, F. Permenter, and R. Tedrake, “An efficiently solvable
quadratic program for stabilizing dynamic locomotion,” in Robotics
and Automation (ICRA), IEEE International Conference on, May
2014.

[16] J. Pratt, J. Carff, S. Drakunov, and A. Goswami, “Capture Point:
A Step toward Humanoid Push Recovery,” in Humanoid Robots
(Humanoids), 6th IEEE-RAS International Conference on, Dec 2006,
pp. 200–207.

[17] T. Koolen, T. De Boer, J. Rebula, A. Goswami, and J. Pratt,
“Capturability-based analysis and control of legged locomotion, part 1:
Theory and application to three simple gait models,” The International
Journal of Robotics Research, vol. 31, no. 9, pp. 1094–1113, Aug
2012.

[18] J. Englsberger, C. Ott, M. Roa, A. Albu-Schaffer, and G. Hirzinger,
“Bipedal walking control based on Capture Point dynamics,” in Intel-
ligent Robots and Systems (IROS), IEEE/RSJ International Conference
on, Sept 2011, pp. 4420–4427.

[19] M. Morisawa, S. Kajita, F. Kanehiro, K. Kaneko, K. Miura, and
K. Yokoi, “Balance control based on Capture Point error compen-
sation for biped walking on uneven terrain,” in Humanoid Robots
(Humanoids), 12th IEEE-RAS International Conference on, Nov 2012,
pp. 734–740.

[20] T. Sugihara, “Standing stabilizability and stepping maneuver in planar
bipedalism based on the best COM-ZMP regulator,” in Robotics and
Automation (ICRA), IEEE International Conference on, May 2009, pp.
1966–1971.

[21] J. Englsberger, C. Ott, and A. Albu-Schaffer, “Three-dimensional
bipedal walking control using Divergent Component of Motion,”
in Intelligent Robots and Systems (IROS), IEEE/RSJ International
Conference on, Nov 2013, pp. 2600–2607.

[22] B. Lee, “Design of a humanoid robot for disaster response,” Master’s
thesis, Virginia Polytechnic Institute and State University, April 2014.

[23] J. Englsberger, T. Koolen, S. Betrand, J. Pratt, C. Ott, and A. Albu-
Schaffer, “Trajectory generation for continuous leg forces during
double support and heel-to-toe shift based on divergent component
of motion,” in Intelligent Robots and Systems (IROS), IEEE/RSJ
International Conference on, Sept 2014.

[24] M. B. Popovic and H. Herr, “Ground reference points in legged loco-
motion: Definitions, biological trajectories and control implications,”
Int. J. Robot. Res, vol. 24, no. 12, p. 10131032, 2005.

[25] M. A. Hopkins, D. W. Hong, and A. Leonessa, “Humanoid locomotion
on uneven terrain using the time-varying Divergent Component of Mo-
tion,” in Humanoid Robots (Humanoids), 14th IEEE-RAS International
Conference on, Nov 2014.

[26] R. Featherstone, Rigid Body Dynamics Algorithms. Springer Berlin,
2008, vol. 49.

[27] D. Orin and A. Goswami, “Centroidal momentum matrix of a hu-
manoid robot: Structure and properties,” in Intelligent Robots and
Systems (IROS), IEEE/RSJ International Conference on, Sept 2008,
pp. 653–659.

[28] Y. Abe, M. da Silva, and J. Popovic, “Multiobjective control with fric-
tional contacts,” in Symposium on Computer Animation, M. Gleicher
and D. Thalmann, Eds. Eurographics Association, 2007, pp. 249–258.

[29] C. Ott, M. Roa, and G. Hirzinger, “Posture and balance control
for biped robots based on contact force optimization,” in Humanoid
Robots (Humanoids), 11th IEEE-RAS International Conference on,
Oct 2011, pp. 26–33.

[30] D. Goldfarb and A. Idnani, “A numerically stable dual method for
solving strictly convex quadratic programs,” Mathematical Program-
ming, vol. 27, no. 1, pp. 1–33, 1983.

[31] C. Knabe, B. Lee, V. Orekhov, and D. Hong, “Design of a compact,
lightweight, electromechanical linear series elastic actuator,” in ASME
International Design Engineering Technical Conference, 2014.

[32] S. Bertrand, T. Wu, and J. Pratt, “Momentum-based control framework
and capturibility-based walking control - application to the humanoid
robot Atlas.” Presented at the Institute for Human and Machine
Cognition (IHMC), Pensacola, Florida, March 14, 2014.

[33] C. Knabe, B. Lee, and D. Hong, “An inverted straight line mechanism
for augmenting joint range of motion in a humanoid robot,” in ASME
International Design Engineering Technical Conference, 2014.

[34] B. Lee, C. Knabe, V. Orekhov, and D. Hong, “Design of a human-like
range of motion hip joint for humanoid robots,” in ASME International
Design Engineering Technical Conferences, 2014.


	Introduction
	Divergent Component of Motion Tracking
	Time-Varying DCM Dynamics
	Time-Varying DCM Tracking

	Whole-Body Control
	Humanoid Dynamics
	Task-Space Formulation
	Model-Based Optimization (Quadratic Program)
	Optimization Costs
	Optimization Constraints
	Implementation

	Compliant Locomotion
	Standing
	Momentum Control
	Upper Body Control
	Lower Body Control

	Stepping
	Trajectory Planning
	State Machine

	Low-level control
	Leaky Integrator
	Joint Control


	Experimental Results
	Balancing
	Walking
	Robustness to Unmodeled Terrain

	Conclusion

