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This work presents a novel motion planning framework, rooted in nonlinear program-
ming theory, that treats uncertain fully and underactuated dynamical systems described
by ordinary differential equations. Uncertainty in multibody dynamical systems comes
from various sources, such as system parameters, initial conditions, sensor and actuator
noise, and external forcing. Treatment of uncertainty in design is of paramount practical
importance because all real-life systems are affected by it, and poor robustness and sub-
optimal performance result if it is not accounted for in a given design. In this work uncer-
tainties are modeled using generalized polynomial chaos and are solved quantitatively
using a least-square collocation method. The computational efficiency of this approach
enables the inclusion of uncertainty statistics in the nonlinear programming optimization
process. As such, the proposed framework allows the user to pose, and answer, new
design questions related to uncertain dynamical systems. Specifically, the new framework
is explained in the context of forward, inverse, and hybrid dynamics formulations. The
forward dynamics formulation, applicable to both fully and underactuated systems, pre-
scribes deterministic actuator inputs that yield uncertain state trajectories. The inverse
dynamics formulation is the dual to that of forward dynamics, and is only applicable to
fully actuated systems, deterministic state trajectories are prescribed and yield uncertain
actuator inputs. The inverse dynamics formulation is more computationally efficient as it
requires only algebraic evaluations and completely avoids numerical integration.
Finally, the hybrid dynamics formulation is applicable to underactuated systems where it
leverages the benefits of inverse dynamics for actuated joints and forward dynamics for
unactuated joints, it prescribes actuated state and unactuated input trajectories that yield
uncertain unactuated states and uncertain actuated inputs. The benefits of the ability to
quantify uncertainty when planning the motion of multibody dynamic systems are illus-
trated through several case studies. The resulting designs determine optimal motion
plans—subject to deterministic and statistical constraints—for all possible systems within

the probability space. [DOI: 10.1115/1.4026994]

1 Introduction

1.1 Motivation. Design engineers cannot quantify exactly
every aspect of a given system. These uncertainties frequently
create difficulties in accomplishing design goals and can lead
to poor robustness and suboptimal performance. Tools that
facilitate the analysis and characterization of the effects of
uncertainties enable designers to develop more robustly per-
forming systems. The need to analyze the effects of uncer-
tainty is particularly acute when designing motion plans for
dynamical systems. Frequently, engineers do not account for
various uncertainties in their motion plan in order to save
time and to reduce costs. However, this simply delays, or
hides, the cost, which is inevitably incurred downstream in
the design flow, or worse, after the system has been deployed
and fails to meet the design goals. Ultimately, if a robust
motion plan is to be achieved, uncertainties must be
accounted for up-front during the design process.

Many industries employ dynamic systems with planned
motions that operate with uncertainty. For example, the industrial
manufacturing sector uses articulated robotic systems for repeated
tasks such as welding, packaging, and assembly; medical robots
have been designed to aid physicians in surgery; and autonomous
vehicles are taking on more and more tasks in military, municipal-
ity, and even domestic operations.
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In the area of unmanned ground vehicles (UGVs), organiza-
tions such as the Defense Advanced Research Projects
Agency (DARPA), the National Science Foundation (NSF),
Office of Naval Research (ONR), and other agencies continue
to investigate the application of legged robotic systems. Addi-
tionally, many UGVs, unmanned surface vehicles (USVs), and
unmanned underwater vehicles (UUVs) are outfitted with
articulated accessories to perform various tasks. These systems
are designed to aid in diverse operations including improvised
incendiary device (IID) detection and disarmament, material
and equipment handling, and convoy, search, and rescue.
Some showcase examples include Boston dynamics’ BigDog
(and next generation LS3), which convoys soldier equipment
and Vecna’s BEAR that retrieves wounded soldiers. Both of
these examples work with payloads of varying size and
weight in rough unknown terrain. These examples -clearly
illustrate the need to design motion strategies with uncertain-
ties in mind. Elaborating further on the equipment convoy
task, optimal design of the locomotion strategy, or gait, of
the systems carrying uncertain payloads could result in large
fuel/energy savings as well as lengthen the achievable distan-
ces of a given operation.

1.2 State of the Art in Motion Planning and Uncertainty
Quantification. In the following, a review of the literature is pre-
sented where works related to motion planning and uncertainty
quantification are specifically covered.

1.2.1 Deterministic Optimization-Based Motion Planning. In
Ref. [1] Park presents a nonlinear programming approach to
motion planning for robotic manipulator arms described by
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deterministic ODEs. The main contribution of Park’s work is to
define new cost terms that capture actuator force limiting charac-
teristics, where actuator velocities and resulting feasible torques
are defined. Park’s formulation utilizes quintic B-splines to pro-
vide a tractable finite-dimensional search space along with quasi-
Newton-based solver methods (e.g., BFGS). Additionally, he
approaches obstacle avoidance by defining distance constraints
with the growth function technique from Ref. [2].

Sohl et al. presented a series of papers that document their
excellent work in the area of optimal manipulator motion planning
[3-5]. Their approach provides a few critical properties that
streamline the problem. First, their geometric dynamics formula-
tion has an equivalent recursive formulation that provides O(n)
computational complexity. Second, the use of the product-of-
exponentials (POE) in their formulation provides a straightfor-
ward and new approach to calculating the analytic gradient of the
optimal motion planning objective function (which subsequently
improves performance in the optimization search). In Ref. [6]
Martin and Bobrow present a minimum effort formulation for
open chain manipulators. In Ref. [7] Sohl and Bobrow extend the
work to address branched kinematic chains; in Refs. [8—10] they
again extend the work to address underactuated manipulators; and
in Refs. [11,12] the methods are applied to the specific design
problem of maximizing the weightlifting capabilities of a Puma
762 Robot. Throughout this series of work the sequential quad-
ratic programming (SQP) technique is used to solve the con-
strained optimization problem, however, in Ref. [13] a Newton
type optimization algorithm is developed that reuses the analytic
gradient and Hessian information from the geometric dynamics.
In Ref. [14] Bobrow et al., further extend the work to solve
infinite-dimensional problems using a sequence of linear—qua-
dratic optimal control subproblems. Finally, Ref. [15] extended
the geometric-based optimization methods to more general
dynamic systems including those with closed-kinematic loops and
redundant actuators and sensors.

Another inspiring body of research comes from Xiang et al.
[16-23] where analytic derivatives for the optimization cost of
general open, branched, and closed looped systems, described by
recursive Lagrangian dynamics, is presented. Formulations are
based on the Denavit-Hartenberg kinematic methods, cubic B-
splines, and SQP-based solvers. Application emphasis focuses on
the motion planning of overactuated 3D human figures, where
models with as many as 23 DOFs and 54 actuators are used to
design natural cyclic walking gaits. A combination of inverse and
forward dynamics formulations are used, however, their formula-
tion avoids explicit numerical integration (required in a sequential
nonlinear programming (SeqNLP) methodology). Instead, their
formulation makes use of the simultaneous nonlinear program-
ming (SimNLP) methodology, which discretizes the EOMs over
the trajectory of the system and treats the complete set of equa-
tions as equality constraints for the NLP. Therefore, the SimNLP
has a much larger set of constraints than the SeqNLP approach
but enjoys a more structured NLP that typically experiences faster
convergence. (Note the definitions of SimNLP and SeqNLP come
from Refs. [24,25].)

1.2.2 Motion Planning of Uncertain Systems. Very little
research has been performed in the area motion planning of uncer-
tain dynamical systems. LaValle treats sensor uncertainty with
RRTs in Ref. [26]. Barraquand addresses both actuator and sensor
uncertainty in a stochastic dynamic programming (DP) framework
but this work only addresses the kinematics of the system [27].
Park also presents a kinematic-only motion planning solution for
systems with sensor and actuator uncertainties based on the
Fokker—Planck equation [28]. Erdmann’s early work on the back-
projection method also only addressed sensor and actuator noise
and was limited to first-order dynamic models [29].

In Ref. [30] Kewlani presents an RRT planner for mobility of
robotic systems based on gPC but refers to it as a stochastic
response surface method (SRSM). This technique is similar in
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spirit to the work presented in this paper; however, the main dif-
ference is that Kewlani’s solution is developed only for determin-
ing a feasible motion plan (given the use of the RRT technique).
In Refs. [31-33] Hays et al. presented initial investigations of the
framework presented in this paper, where the goal of the new
framework is to provide an optimal motion plan for uncertain dy-
namical systems versus a feasible one.

1.2.3 Generalized Polynomial Chaos (gPC) Uncertainty
Quantification. Generalized polynomial chaos (gPC) is a rela-
tively new method that is rapidly being accepted in diverse appli-
cations. Its origins come from early work by Wiener in the 1930s
where he introduced the idea of homogenous chaoses [34]. His
work made use of Gaussian distributions and the Hermite
orthogonal polynomials. Xiu and Karniadakis generalized the con-
cept by expanding the list of supported probability distributions
and associated orthogonal polynomials [35,36], where the Galer-
kin projection method (GPM) was initially used. In Refs. [36-38]
Xiu showed an initial collocation method based on Lagrange
interpolation. A number of methods for selecting the collocation
point locations were presented including tensor products and
Smolyak sparse grids.

In Ref. [39] Sandu et al. introduced the least-squares colloca-
tion method (LSCM) and used the roots of the associated orthogo-
nal polynomials in selecting the sampling points. Cheng and
Sandu showed that the LSCM maintains the exponential conver-
gence of GPM yet was superior in computational speed in Ref.
[40]. The Hammersley low-discrepancy sequences (LDS) data set
was their preferred method in selecting collocation points and
they presented a modified time stepping mechanism for solving
stiff systems where an approximate Jacobian was used. The main
benefit of quantifying uncertainties with gPC through LSCM over
GPM is that the deterministic constitutive relations need not be
modified to produce an uncertain set of constitutive equations. The
deterministic equations are simply evaluated at appropriately
selected sample points from the probability space. This drastically
simplifies the burden of implementing uncertainty quantification on
the practitioner.

1.2.4  Multielement gPC. The accuracy of gPC deteriorates over
time in long simulations and is dependent on the continuity of the sys-
tem. In an effort to address these two concerns, Wan and Karniadakis
developed multielement gPC (MEgPC) [41,42]. This method discre-
tizes the probability space into nonoverlapping partitions. Within
each partition the traditional single element gPC is performed. Sum-
ming element integrations provides a complete integration of the full
probability space. The algorithm presented adaptively partitioned the
space based on estimates of error convergence. When an error esti-
mate deteriorated to a specified point the element was split. The ini-
tial work was developed for the GPM methodology using uniform
distributions. MEgPC was subsequently extended to arbitrary distri-
butions in Refs. [43,44]. Foo developed a collocation-based MEgPC
in Ref. [45] and further extended the method to support higher
dimensions using ANOVA methods in Ref. [46].

As an alternative to MEgPC, Witteveen and laccarino devel-
oped a similar multielement method based on gPC called the sim-
plex elements stochastic collocation (SESC) method. This method
adaptively partitions the probability space using simplex elements
coupled with Newton—Cotes quadrature. Their method has shown
an O(n) convergence as long as the approximating polynomial
order is increased with the number of uncertainties.

1.2.5 Recent Applications of gPC/MEgPC. The origins of
¢PC come from thermal/fluid applications; however, its adoption
in other areas continues to expand. Sandu et al. introduced its
application to multibody dynamical systems in [39,40,47-51].
Significant work has been done applying it as a foundational ele-
ment in parameter [35-38,52-70] and state estimation [71,72], as
well as system identification [73]. Relatively recent work has
applied gPC to both classical and optimal control system design
[52,74,75], power systems [76], and mobile robots [77].
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1.3 Contributions of This Work. This work presents a novel
nonlinear programming (NLP) based motion planning framework
that treats smooth, lumped-parameter, uncertain, and fully and
underactuated dynamical systems described by ordinary differen-
tial equations (ODEs). Uncertainty in multibody dynamical sys-
tems comes from various sources, such as system parameters,
initial conditions, sensor and actuator noise, and external forcing.
Treatment of uncertainty in design is of paramount practical
importance because all real-life systems are affected by it, and
poor robustness and suboptimal performance results if it is not
accounted for in a given design. System uncertainties are modeled
using generalized polynomial chaos (gPC) and are solved quanti-
tatively using a least-square collocation method (LSCM). The
computational efficiencies of this approach enable the inclusion of
uncertainty statistics in the NLP optimization process. As such,
new design questions related to uncertain dynamical systems can
now be answered through the new framework.

Specifically, this work presents the new framework for forward,
inverse, and hybrid dynamics formulations. The forward dynamics
formulation—applicable to both fully and underactuated sys-
tems—has prescribed deterministic actuator inputs and yields
uncertain state trajectories. The inverse dynamics formulation is
the dual to the forward dynamics formulation and is only applica-
ble to fully actuated systems. It has prescribed deterministic state
trajectories and yields uncertain actuator inputs. The inverse
dynamics formulation is more computationally efficient as it is
only an algebraic evaluation and completely avoids any numerical
integration. Finally, the hybrid dynamics formulation is applicable
to underactuated systems. It leverages the benefits of inverse dy-
namics for the actuated joints and forward dynamics for the unac-
tuated joints. It has prescribed actuated state and unactuated input
trajectories, which are deterministic, and yields uncertain unactu-
ated states and uncertain actuated inputs. The benefits of the abil-
ity to quantify uncertainty when planning motion of multibody
dynamic systems are illustrated in various optimal motion plan-
ning case studies. The resulting designs determine optimal motion
plans—subject to deterministic and statistical constraints—for all
possible systems within the probability space.

It is important to point out that the new framework is not
dependent on the specific formulation of the dynamical equations
of motion (EOMs); formulations such as Newtonian, Lagrangian,
Hamiltonian, and geometric methodologies are all applicable.
This work applies the analytical Lagrangian EOM formulation.

The structure of this paper is as follows. A brief review of
Lagrangian dynamics is presented in Sec. 2. Section 3 discusses
the well-studied motion planning problem for deterministic sys-
tems. Section 4 reviews the gPC methodology for uncertainty
quantification. Section 5 introduces the new framework for motion
planning of uncertain fully and underactuated dynamical systems
based on the uncertain forward, inverse, and hybrid dynamics for-
mulations with illustrating case studies. Concluding remarks are
presented in Sec. 6.

2 Multibody Dynamics

The new framework presented in this work is not dependent on
a specific EOM formulation. Formulations such as Newtonian,
Lagrangian, Hamiltonian, and geometric methodologies are all
applicable. This work applies the analytical Lagrangian EOM
formulation. As a very brief overview, the Euler—Lagrange ODE
formulation for a multibody dynamical system can be described
by [78,79]

M(q(1),0(0))v(1) + C(q(1), (1), 0(1))v(1) + N(q(2), v(1), 0(7))
= F(q(0),v(1),9(1),0(1)) = S(1) M

where ¢(f) € R™ are independent generalized coordinates
equal in number to the number of degrees of freedom ny;
v(r) € R™ are the generalized velocities and—using Newton’s
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dot notation—v(r) contains their time derivatives; 0(r) € R™
includes system parameters of interest; M(q(r), 0(r)) € R™*" is
the square inertia matrix; C(gq(¢),v(1),0(z)) € R"*" includes
centrifugal, gyroscopic, and Coriolis effects; N(q(¢),v(¢),0
(1)) € R™ are the generalized gravitational and joint forces;
S € R"™ ™M is a selection matrix mapping the applied inputs
7(¢) € R"™, or wrenches, appropriately. (For notational brevity, all
future equations will drop the explicit time dependence.)

The relationship between the time derivatives of the independ-
ent generalized coordinates and the generalized velocities is

q=H(q,0)y )

where H(q, 0) is a skew-symmetric matrix that is a function of the
selected kinematic representation (e.g., Euler angles, Tait—Bryan
angles, axis angle, Euler parameters, etc.) [33,80,81]. However, if
Eq. (1) is formulated with independent generalized coordinates
and the system has a fixed base, as in Refs. [31,32], then Eq. (2)
becomes ¢ = v.

The trajectory of the system is determined by solving Egs.
()=(2) as an initial value problem, where ¢(0) =g, and
v(0) = vy. Also, the system measured outputs are defined by

y=0(q,4,0) 3)

where y € R™ with n, equal to the number of outputs.

3 Motion Planning of Deterministic Fully
and Underactuated Systems

The task of dynamic system motion planning is a well-studied
topic. It aims to determine either a state or input trajectory—or an
appropriate combination—to realize some prescribed motion
objective. Treatment of fully and underactuated systems presents
multiple methodologies for formulating the governing dynamics.
The forward dynamics formulation, applicable to both fully and
underactuated systems, prescribes actuator inputs that yield state
trajectories through numerical integration. The inverse dynamics
formulation is the dual to the forward dynamics formulation and
is only applicable to fully actuated systems; it has prescribed state
trajectories that yield actuator inputs. The inverse dynamics for-
mulation is more computationally efficient as it is only an alge-
braic evaluation and completely avoids any numerical integration.
Finally, the hybrid dynamics formulation is applicable to underactu-
ated systems and leverages the benefits of inverse dynamics for
actuated joints and relies on forward dynamics for unactuated joints.
It prescribes actuated state and unactuated input trajectories to deter-
mine unactuated states through numerical integration and actuated
inputs through algebraic evaluations. Partitioning the system states
and inputs between actuated and unactuated joints in the following
manner, ¢ = {“q,"“q} and T = {“z, "z}, facilitates the illustration of
what quantities are known versus unknown when using these formu-
lations of the system’s dynamics (see Table 1).

Regardless of which dynamics formulation is selected, a com-
mon motion planning practice is to approximate infinite dimen-
sional known trajectories by a finite-dimensional parameterization
[10]. This paper parameterizes all known trajectories with B-
splines. For example, the parameterization of ¢ takes the form

Nsp

o1 .
g(P.u) =" (w)p o)
=0
Table 1 Knowns versus unknowns dynamic properties
Formulation Known Unknown
Forward T q,4,4,v,v
Inverse q.4,9,v,v T
Hybrid “q.q,q,"v, v, "< “q,"q,"q,"v,"v, "t
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and a similar expansion is given for t(P,u). There are (ng, + 1)
control  points P ={p° ... p"} € R™F o RMm  with
p' € R"= where p'/ is the jth element of the ith control point;
m + 1 is nondecreasing knots u” < --- < u™ € R; (ny, + 1) basis
[ (u) of degree of p; and the relation m = ng, + p + 1 must be
maintained. _

Basis functions f"¥(u) can be created recursively by the
Cox—de Boor recursion formula:

o 1 if ol <u<u™!
B (u) =
0 otherwise

u—u ul+ga+1 —u

P = G B 0+ e P

)

Also, a clamped B-spline has (o + 1) repeated knots at the
extremes of the knot list. The clamping allows one to force the
curve to be tangent to the first and last control point legs (or seg-
ments) at the first and last control points. Meaning, (P, u") = p°
and t(P,u") = p"». This enables one to specify the initial and ter-
minal conditions for the curve by the initial and final control
points. The remaining interior control points specify the shape of
the curve.

Derivatives of B-spline functions are also B-splines. Let
q'(P,u) = (0q(u)/0u) represent the first derivative of q(P,u).
With a slight abuse of Lagrange’s derivative notation, let the con-

gy —1

trol points for q'(P,u) be defined as P’ = {p’o, vy D .
Unlike P, the values of P’ are predetermined through the follow-
ing recursive relation:

i £ i1 '
T oyitetl it (p’ _pl) (0)

which gives the ny, — 1 inherited control points, or P’ € R~
xIR™m_The corresponding ng, — 1 basis functions "' (u) are
of degree p — 1 and are also calculated using Eq. (5).

Additionally, all derivative B-splines inherit their knot vector
from their parent B-spline. However, only a subset of the original
knot vector is used. Meaning, the knot vector for a derivative #’ is
updated by removing the first and last knot from the original knot
vector u,

<u" Y cu )

These recursive relations for control points, basis, and knot vec-
tors also apply for higher-order derivatives. Therefore, by defining
P for q(P, u), all of its derivatives supported by the original degree
¢, control points, and knots, are automatically defined [82].

To illustrate, given q(P, «) defined in Eq. (4), the first and sec-
ond derivative curves are defined by

ngp—1

q/(l)/7 u/) _ Z ﬁi,p—l (M/)p/i (8)
i=0
ng—2 ) )
q”(P”, ll”) _ Z ﬁz,g;—2 (u//)pm )

i=0

Therefore, in order to specify the initial and/or terminal conditions
of a derivative clamped B-spline, the slope of the first/last leg of
its parent’s control points must match the value for the initial/final
condition for the derivative. These are determined from Eq. (6).

In a motion planning setting, the knot span [u®,u™) can be
defined to correspond to the time of a motion plan’s trajectory,
where u’ =1ty and " =1, or f"(u) = B(t). Therefore, the
curves g(P,u) = q(P,t) and t(P,u) = t(P,t) are defined from
[tOv [f)

031021-4 / Vol. 9, JULY 2014

The generalized velocities and accelerations v(P’,7) and
v(P" 1), respectively, may be determined by differentiating Eq.
(2), yielding

o v (P, OH O OH OO
0 = (P 05"+ (- G+ )
(10)
Solving Eq. (2) for v(P', ) and Eq. (10) for »(P”, 1) yields
v(P',1) = (H(q(P,1),0))"'4(P', 1) (an

PP, 1) = (H(q(P,1),0)"

OH

X (q‘(P”, 1) —v(P'1) (E + OHOq  OH 80))

0q Ot 90 ot
12)

The parameterizations (4), and (10)—(12) are equally applicable to
appropriate actuated and unactuated subsets.

Once all known trajectories are parameterized the EOMs take
on the form

Forward: F(q(P),v(P"),»(P"),0) =t (13)
Inverse: © = F(q(P),v(P"),»(P"),0) (14)
tybrid: (2]) = Gae) ). S50 P 0) (5)

where the time dependence has been dropped again for notational
convenience.

In the hybrid dynamics case, it is worth mentioning that the
unactuated input wrenches “t represent joint constraint forces.
Depending on the formulation used to determine the EOMs (e.g.,
analytic versus recursive methods), then “r may be implicitly
known once {*q(P),v(P),“v(P)} are specified. In such a formu-
lation Eq. (15) reduces to

(16)

Once Egs. (13)—(16) are determined then the NLP-based deter-
ministic motion planning problems may be formulated as

Forward dynamics NLP formulation :

min J
x={P}

s.t. Forward dynamics
F(q,v,v,0) =1(P)
Kinematics
q=H(q,0)v
Outputs
y=0(q,4,0)

Constraints
C(y,t,0) <0
Hard ICs and TCs conditions

A7)

q(0) = q
4(0) =4y
a(r) =4,
() = 4,

q
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Inverse dynamics NLP formulation :

min J
x={P}

s.t.  Kinematics
v(P') = (H(q(P),0))"'4(P")
»(P") = (H(q(P),0))™"

OH  0H g OH o0
a0 ot

x <ij(P”) — (P <E +

Inverse dynamics

© = F(q(P),v(P'),»(P"),0)

dq Ot

Outputs

y=0O(q(P),4(F'),0)
Constraints

C(y,7,0) <0

Hard ICs and TCs conditions
q(0) =P’ =g,

q(0) =P = g

q(y) =P =g,
q(yy) =P" " =4,
Hybrid dynamics NLP formulation :

min J
x={P}

s.t.  Actuated kinematics
“w(P') = (H(“q(P),0))"'*4(P")
“(P") = (H(“q(P),0)) "

OH 8H@+0_H@
00 ot

<(eater) o) (G G

Hybrid dynamics
"y
(%) = G(“q(P),"v(P"),"»(P"),"<(P), 0)
Unactuated kinematics
ug =vH('q,0)"y
Outputs
y=0(q(P),4(P"),0)
Constraints
C(y,7,0) <0
Hard actuated ICs and TCs conditions
“q(0) =“P° =“q,
“4(0) =" =4y
“q(iy) =P" =“q,

aq'(tf) —apny—1 _ “q,
Hard unactuated ICs and TCs conditions
“q(0) = "qo
“q(0) = "4,
“a(ir) ="q,
“4(rr) = "4,

Journal of Computational and Nonlinear Dynamics

(18)

(19)

Equations (17)—(19) seek to find the control points P that mini-
mize some prescribed objective function J, while being subject to
the dynamic constraints defined in one of Eqs. (13)—(16). Addi-
tional constraints may also be defined; for example, maximum/
minimum actuator and system parameter limits or physical system
geometric limits can be represented as inequality relations
C(y,7,0) < 0. In the hybrid dynamics NLP formulation, Eq. (19)
explicitly differentiates between the initial conditions (ICs) and
terminal conditions (TCs) for the actuated and unactuated states.
All actuated ICs and TCs are determined by corresponding control
points in P and all unactuated ICs and TCs are freely defined.
When ICs and/or TCs are explicitly defined as shown in Eq. (19)
they are referred to as hard constraints; conversely, if the con-
straints are added to the definition of the objective function J, then
they are referred to as soft constraints.

The literature contains a variety of objective function defini-
tions for J when used in a motion planning setting. Some com-
monly defined objective functions are

Jpr =1t (20)
n; 1y
Jp2 = ZJ o2 (t)dt @21
i=1 J1=0
ni -ty
Jps = ZJ < ()i (1)|dt (22)
i=1 Jio=
n; iy
Jps = ZJ 2(1)dt (23)
i=1 J1=0

where Eq. (20) represents a time optimal design, Eq. (21) mini-
mizes the effort, Eq. (22) the power, and Eq. (23) the jerk.

The solutions to Egs. (17)—(19) produce optimal motion plans
under the assumption that all system properties are known (i.e., Egs.
(13)(16) are completely deterministic). The primary contribution
of this work is the presentation of variants of Eqs. (17)—(19) that
allow Egs. (13)—(16) to contain uncertainties of diverse types (e.g.,
parameters, initial conditions, sensor/actuator noise, or forcing func-
tions). The following section will briefly introduce generalized poly-
nomial chaos (gPC) that is used to model the uncertainties and to
quantify the resulting uncertain system states and inputs.

4 Generalized Polynomial Chaos

Generalized polynomial chaos (gPC), first introduced by
Wiener [34], is an efficient method for analyzing the effects of
uncertainties in second order random processes [35]. This is
accomplished by approximating a source of uncertainty 0 with an
infinite series of weighted orthogonal polynomial bases called
polynomial chaoses. Clearly an infinite series is impractical, there-
fore, a truncated set of p, + 1 terms is used with p, € NN repre-
senting the order of the approximation. Or,

Po

0(&) =0y (&(w)) 24)
Jj=0

where 0 € R represent known stochastic coefficients; ¥/ € R
represent individual single-dimensional orthogonal basis terms (or
modes); &(w) € R is the associated random variable for 0 that
maps the random event w € Q, from the sample space Q to the do-
main of the orthogonal polynomial basis (e.g., & : Q — [—1, 1]).

Polynomial chaos basis functions are orthogonal with respect to
the ensemble average inner product,

1
WOV = | e omea=o. forizi @)

where w(&) is the weighting function that is equal to the joint
probability density function of the random variable ¢. Also,
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(W, /) = 1,Vj when using normalized basis and standardized
basis result in a nonunity constant value and may be efficiently
computed off-line using Eq. (25).

Generalized polynomial chaos can be applied to multibody
dynamical systems described by differential equations [39,47].
The presence of uncertainty in the system results in uncertain
states and/or inputs. Therefore, the uncertain states/inputs can be
approximated in a similar fashion as Eq. (24):

SOV, i=len Q6)
j=0
S t):i:rf(t)lp’(é) i=1,..n 27)

=0

where V(1) € R™ represent the gPC expansion coefficients for
the ith state; /(1) € R™ represent the gPC expansion coefficients
for the ith input; and n, € IN representing the number of basis
terms in the approximation. It is instructive to notice how time
and randomness are decoupled within a single term after the gPC
expansion. Only the expansion coefficients are dependent on time,
and only the basis terms are dependent on the 7, random variables
&, Also, any unknown itemized in Table 1 has a corresponding
approximation as found in Egs. (26) and (27).

The stochastic basis may be multidimensional in the event there
are multiple sources of uncertainty. The multidimensional basis
functions are represented by ¥ € R™. Additionally, £ becomes a
vector of random variables & = {¢;,..., ¢, } € R™, and maps the
sample space Q to an n, dimensional cub01d E:Q — [—1,1]" (as
in the example of Jacobi chaoses).

The multidimensional basis is constructed from a product of the
single-dimensional basis in the following manner:

W=y, i =0,..,pp, k=1,...,n,  (28)
where subscripts represent the uncertainty source and superscripts
represent the associated basis term (or mode). A complete set of
basis may be determined from a full tensor product of the single-
dimensional bases. This results in an excessive set of (p, + 1)
basis terms. Fortunately, the multidimensional sample space can
be spanned with a minimal set of n, = (n,, +p(,)!/n,,!p(,! basis
terms. The minimal basis set can be determined by the products
resulting from these index ranges:

il = 07 -y Po
ih=0,...,(po —11),...
i =0, ..., ( iy — iy — e — i(n/,,1)>

The number of multidimensional terms 7, grows quickly with
the number of uncertain parameters 7, and polynomial order p,.
Sandu et al. showed that gPC is most appropriate for modeling
systems with a relatively low number of uncertainties [39,47] but
can handle large nonlinear uncertainty magnitudes.

Substituting Egs. (24), (26), and (27) into Egs. (13)—(15) pro-
duces the following uncertain dynamics:

Uncertain forward dynamics (UFD):

f(i dOW(E), S nwiE) Zhw(r>Wf<¢>,X0L<r>w2<ék>>
=0 =0 =0 =

= 1(P) (29)

> (30)

Uncertain inverse dynamics (UID):

i TV =F <q(P), v(P'), ¥(P"), Z AGIAR
j=0 j=0
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Uncertain hybrid dynamics (UHD):

S (W)
=0

)>

J=0

— g(aq(P)7av(P/) [ P// u

(W (&)

Po
ZéV (W (& ) 31

where the unknowns are now the unknown gPC expansion coeffi-
cients. (Notice how the uncertain parameters are expanded by their
associated single-dimensional basis where the dependent states and/
or applied inputs are expanded by the multidimensional basis.)

The Galerkin projection method (GPM) is a commonly used
method for solving Egs. (29)—(31), however, this is a very intru-
sive technique and requires a custom formulation of the dynamic
EOMs. As an alternative, sample-based collocation techniques
can be used without the need to modify the base EOMs.

Sandu et al. [39,40] showed that the collocation method solves
formulations such as Eqgs. (29)—(31) by solving Eqgs. (13)—(16) at a
set of points yu € R™ k=1, ..., n,p, selected from the n,-dimen-
sional domain of the random variables & € R"™. Meaning, at any
given instance in time, the random variables’ domain is sampled
and solved n,, times with £ = ;u (updating the approximations of
all sources of uncertainty for each solve), then the uncertain coef-
ficients can be determined at that given time instance. This can be
accomplished by defining intermediate variables such as

ny

(1 4m) Z\/ W (ep) (32)
ﬂl;
{Tits ) =Y 70 (epr) 33)
Jj=0
where i =1,...,n,k=0,...,n,, and [ = 1,..., n;. Substituting

them into Egs. (29)—(31) yields

Forward dynamics collocation sampling :

10ty k) = F (10t 110) 1O, (85 110)),
i=1,..,n,k=0,...,np,r=1,..n (34)
Inverse dynamics collocation sampling :
kTi(t; /\,u) = -7'—(‘17 v, ‘}7 /\’®l‘(l; k:u))a
i=1,...,n,k=0,....n,p,r=1,...,n, 35)
Hybrid dynamics collocation sampling :
“Vi(f§ KH)
(k - g(aqyav7a‘}7 u17k®7‘(1; k.u))a
(8 1)
i=1,...."ng,l=1,....,%;,k=0...ny,
r=1,...,np, (36)
where
«O, (£ 1) = 0,010 (k1) 37

Equations (34)—(36) provide a set of n., independent equations
whose solutions determine the uncertain expansion coefficients.
This is accomplished by recalling the relationship of the expan-
sion coefficients to the solutions as in Egs. (32) and (33). In matrix
notation (32) and (33) can be expressed for all states:

Vi= (0i(0) (), i=1.."n (38)
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T = (0u(0)"™¥Yw), [=1,...% (39)

where the matrix
A =Y Gw), j=0,..,mpk=0,...,n (40)

is defined as the collocation matrix. It is important to note that
ny < nep. The expansion coefficients can now be solved for using
Eqgs. (38) and (39):

\'/l'(l) :A#V,',
‘L'[(l‘) = A#T[7

i=1,....%ng

(41

I=1,....; (42)
where A% is the pseudo inverse of A if n, < ng,. If n,, = n,,, then
Egs. (41) an (42) are simply a linear solve. References [40,48-51]
presented the least-squares collocation method (LSCM) where the
stochastic state coefficients are solved for, in a least-squares sense,
using Egs. (41) and (42) when n, < n.,. Reference [40] also
showed that as n., — oo the LSCM approaches the GPM solution
where by selecting 3n;, < n., < 4ny, the greatest convergence ben-
efit is achieved with minimal computational cost. LSCM also
enjoys the same exponential convergence rate as p, — o0.

The nonintrusive nature of the LSCM sampling approach is
arguably its greatest benefit; Eqs. (13)—(16) may be repeatedly
solved without modification. Also, there are a number of methods
for selecting the collocation points and the interested reader is rec-
ommended to consult Refs. [36—40] for more information.

5 Motion Planning of Uncertain Dynamical Systems

The deterministic motion planning formulations itemized in
Egs. (17)—(19) do not have the ability to account for uncertainties
that are inevitably present in a system. The primary contribution
of this paper is the development of a new NLP-based framework
that, unlike Egs. (17)—(19) in Sec. 3, directly treats system uncer-
tainties during the motion planning process. Treatment of uncer-
tainties during the motion planning phase allows designers to
determine answers to new questions that previously were not pos-
sible (or very difficult) to answer.

The following sections present the new uncertain motion plan-
ning framework for the forward, inverse, and hybrid dynamics
formulations with associated case studies to illustrate the benefits
of the framework. It is important to note that while these case stud-
ies are simple systems selected intentionally to illustrate the bene-
fits of the new framework, the reader should understand that the
framework is general and can be applied to a diversity of problems
with uncertainties originating from a variety of sources (e.g. ICs,
sensor noise, actuator noise, process noise, parameter uncertainty).

5.1 Forward Dynamics Based Uncertain Motion Planning.
The uncertain motion planning formulation based on forward
dynamics is

min J
x={P}
s.t.  Forward dynamics
F(q(&),v(£),%(£),0(8)) = =(P)
Kinematics
4(&) = H(q(£),0(8))v(¢)
Outputs
¥(&) = 0(q(£).4(£),0(8))
Constraints
C(¥(£),0(8),x(P)) <0
Hard ICs and TCs conditions
q(0:¢) = q
4(0;¢) =4
Q(fﬁ C) = qr,-
q<tf§ 6) = q//

(43)

Journal of Computational and Nonlinear Dynamics

where Eq. (43) is a reformulation of Eq. (17) using the uncertain
dynamics defined in Eq. (34).

As illustrated in Table 2, the known applied inputs 7(P) are
deterministic but the system states {q(&),q(&),§(&),v(&),v(&)}
are uncertain and are modeled using the gPC techniques reviewed
in Sec. 4.

Given the deterministic applied inputs in Eq. (43), motion plan-
ning may use the deterministic cost functions as defined in Egs.
(20)—(23). However, designs may necessitate statistically penaliz-
ing terminal conditions (TC) of the state or output trajectories in
the objective function (occasionally referred to as soft con-
straints). Two candidates are

Ist = [ty | = 1ET e )T = s (1) =50 (2. 0) |
(44)
Jso = Ulz,(,f) ‘ = HE{(e([f? f) - /J(,(,f))z} '
= i(ﬂ ()" (¥, W) 45)
=0

where e(tr; €) =y (tr) — y(ir; €). Equation (44) is the expected
value of the TC’s error and Eq. (45) is the corresponding variance
of the TC’s error. (Due to the orthogonality of the polynomial
basis, Egs. (44) and (45) result in a reduced set of efficient arith-
metic operations on their respective gPC expansion coefficients.)
Therefore, when applying soft constraints, the final cost function J
may be composed of both deterministic and uncertain terms. For
example, J =a-Jp3 + b -Js, where a and b are scalarization
constants.

The inequality constraints may also benefit from added statisti-
cal information. For example, bounding the expected values can
be expressed as

Ct8) =y <Ep@)] <y (46)
where E[y(&)] = p, = y*(¥, W), and {y,y are the minimum/
maximum output bounds, respectively.

Collision avoidance constraints would ideally involve
supremum and infimum bounds:
y <inf(y(r;¢)), sup(y(1¢)) <y “7)

However, one major difficulty with supremum and infimum
bounds is that they are expensive to calculate. A more efficient al-
ternative can be to constrain the uncertain configuration in a
weighted standard deviation sense. Collision constraints would
then take the form

:uy + ;- Ty, < yi
e 48
Vi < py, — % - 0y, “8)
where std [y;(¢)] = oy, = Z}":’l){<‘1’j,‘l‘j> and o; is a linear
scaling factor. This gives the practitioner the ability to specify the

level of uncertainty to be accounted for in the design in a tunable
standard deviation sense.

Table 2 Deterministic knowns versus uncertain unknowns

Formulation Known (P) Unknown (&)
Forward T(P) q(8),4(£),4(8),v(&),%()
Inverse q(P),4(P'),4(P"), ©(¢)

v(P'), v(P")
Hybrid “q(P),"q(P"),"4(P"),

av(P/>7a‘}(I)//)7 uT(P)
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Case Study. Application of Eq. (43) enables a designer to treat
all possible realizations of a given uncertain system when plan-
ning motions of fully actuated and underactuated systems. To
illustrate, a simple fully actuated serial manipulator “pick-and-
place” application (shown in Fig. 1) will now be presented. It is
important to reiterate that while the following example illustrates
one type of uncertainty, Eq. (43) may be applied to diverse appli-
cations with uncertainties unique to that application.

The design objective of this case study is to minimize the effort
it takes to move the manipulator from its initial configuration g
to the target configuration ¢, in a prescribed amount of time 7.
This results in a deterministic objective function of J = X" 7,72,
which is frequently referred to as an effort optimal design. How-
ever, the payload mass M(¢) is defined to be uncertain rendering
the system dynamics uncertain. Since the uncertain serial manipu-
lator is a fully actuated system, where the joints ¢ = {¢;,¢>} are
actuated with the input wrenches t = {1y, 7,}, the motion plan-
ning problem may be appropriately defined by Eq. (43).

By parameterizing the input wrench profiles with B-splines, in
a similar fashion as Eq. (4), Eq. (43) results in a finite search prob-
lem seeking for spline control points P that minimize the actuation
effort defined in J. Therefore, the problem’s optimization varia-
bles are x = {P}.

The actuators are bounded in their torque supply and the manip-
ulator should neither hit the wall it is mounted to nor the obstacle.
The constraints may therefore be defined as

(49)
~Dyy (it a,) < 0

where i=1,2 and j=obstacle for the signed distance
D; J(uyiocTay) measured from each link of the serial manipulator
to the obstacle calculated using the statistical mean and weighted
standard deviations of the configuration/outputs, and {z, 7} are the
minimum/maximum input bounds, respectively.

This formulation allows a design engineer to answer the
question:

Given actuator and obstacle constraints, what is the “effort
optimal” motion plan that accounts for all possible systems within
the probability space?

Without accounting for the uncertainty directly in the dynamics
and motion planning formulations, design engineers would have a
difficult time answering this question.

Obstacle

Fig. 1 A simple illustration of an uncertain fully actuated
motion planning problem. The forward dynamics based formu-
lation aims to determine an effort optimal motion plan and the
inverse dynamics based formulation aims to determine a time
optimal motion plan. Both problems are subject to input wrench
and geometric collision constraints. This system is an uncer-
tain system due to the uncertain mass of the payload.

031021-8 / Vol. 9, JULY 2014

15}

05}

Fig. 2 The effort optimal configuration time histories for the
deterministic serial manipulator pick-and-place problem. This
optimal solution resulted in a J = 2770 (Nm)” design. (The initial
configuration starts at the target ‘x’ on the left and finishes at
the ‘x’ target on the right while progressively darkening from
light gray to black.)

The solution to this problem with the deterministic formulation,
as defined in Eq. (17), results in an effort optimal solution of
J =2770 (Nm)z, where #; = 1.5 s. All system parameters are set
equal to one, 0; =1 (with SI wunits), initial conditions
q(0) = {(n/6), (n/6)} and ¢(0) = {0,0} rad, terminal conditions
q(tr) = {—(n/6), — (n/6)} and ¢(t) ={0,0} rad, and
7= —10,7 =10 Nm. The resulting optimal configuration time
history is shown in Fig. 2.

The solution from the new formulation, as defined in Eq. (43)
with constraints defined by Eq. (49) with weightings factor
o; = 1,Vi={1,2}, results in an effort optimal solution of
J =3530 (Nm)z, where all system parameters and initial/terminal
conditions are defined the same as in the deterministic problem.
The only difference in this problem definition, as compared to the
deterministic problem, is the uncertain payload mass modeled
with a uniform distribution having a unity mean and 0.5 variance.
The resulting optimal uncertain end-effector Cartesian position
time history is illustrated in Fig. 3, where the mean and bounding
time histories (u,, *o; - 0, Vi = {1,2}) are displayed.

Therefore, the effort optimal solution from the uncertain prob-
lem resulted in a more conservative answer of 3530 (Nm)2 as
compared to 2770 (Nm)®. This is a sensible solution. Close
inspection of Fig. 2 shows the deterministic solution drove the
configuration as close to the obstacle as possible. The introduction
of uncertainty in the payload mass affected the amount of input
torque required for the system to reliably avoid the obstacle for all
systems within the probability space. In fact, Fig. 3 shows the

2F N
15F .
Eql 1
>
05¢ .
0 1 1 1 1 1 1 1
15 1 05 0 05 1 15
x(m)

Fig. 3 The effort optimal uncertain end-effector Cartesian
position time history for the uncertain serial manipulator pick-
and-place problem based on the uncertain forward dynamics
NLP. The mean and bounding time histories n, *a; -0, are dis-
played Vi = {1é2} with «; = 1. This optimal solution resulted in a
J =3530 (Nm) design.
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distribution of end-effector Cartesian position trajectory induced
by the uncertain payload. The uncertain optimal motion plan from
Eq. (43) effectively pushed the end-effector configuration distri-
bution away from the obstacle. This results in a larger effort opti-
mal solution, however, all realizable systems (within a tunable
weighted standard deviation sense), are now guaranteed to satisty
the constraints. In other words, the effort optimal solution to Eq.
(43) produces the minimum effort design for the entire family of
systems (again, within a tunable weighted standard deviation
sense). Relying only on the contemporary deterministic problem
formulation in Eq. (17) results in an unrealizable trajectory for a
subset of the realizable systems.

A third study provides some additional insight to what the new
framework can provide. By redefining the objective function for
Egs. (43) as (45) the uncertain design is no longer an effort opti-
mal but terminal variance optimal design. In other words, the new
design question is:

Given actuator and obstacle constraints, what motion plan will
minimize the variance of the terminal condition’s (TC) error when
accounting for all possible systems within the probability space?

The effort optimal design resulted in a TC error standard devia-
tion of Ooly) = [0.191,0.133] m. Redesigning the motion plan

using an objective function defined by Eq. (45) results in a TC
error standard deviation of ¢ o) = [0.144,0.114] m, as shown in

Fig. 4. Therefore, a modest reduction in the TC error standard
deviation was realized, however, the effort of the new design
increased from 3530 to 5910 (Nm)z. These results indicate a Par-
eto optimal trade-off between the effort and TC’s variance. There-
fore, designers may define a hybrid objective function with a
scalarization between the effort optimal and terminal variance
optimal terms.

One additional insight gained from the terminal variance opti-
mal design is related to the controllability of an uncertain system’s
TC variance. If the TC variance was fully controllable then the
terminal variance optimal design would be able to reduce it to
zero. This initial investigation indicates that the variance is not
fully controllable. A rigorous uncertain system controllability
investigation is out of the scope of this work but will be consid-
ered for future research.

A final observation is that the uncertain forward dynamics
motion planning framework embodied in Eq. (43) is most applica-
ble to force controlled systems where input wrenches are pre-
scribed. However, configuration/position controlled systems may
be better designed through application of the uncertain inverse dy-
namics based NLP found in Eq. (50); this is illustrated in the next
section.

2F §
15¢ -
E | ]
>
05} -
0 1 1 1 1 L] 1
15 1 05 0 05 1 15
x(m)

Fig. 4 The terminal variance optimal uncertain end-effector
Cartesian position time history for the uncertain serial manipu-
lator pick-and-place problem based on the uncertain forward
dynamics NLP. The mean and bounding time histories
u, *a; - oy, are displayed Vi = {1k2} with «; = 1. This optimal solu-
tion resulted in a J = 5910 (Nm)? design.
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5.2 Inverse Dynamics Based Uncertain Motion Planning.
The uncertain motion planning formulation based on inverse
dynamics is

min J
x={P}

s.t.  Kinematics

v(P') = (H(q(P),0))"'q(P')

¥(P") = (H(q(P),0))”"
)

Inverse dynamics

©(&) = F(q(P),v(P'),

Outputs

¥(&) = O(q(P),4(P"),0())

Constraints

C(¥(8),0(8),7(&)) <0
Hard ICs and TCs conditions

v(P"),0(8))
(50)

q(0) =P’ = ¢,

§(0) =P = g,
q(y) =P =gq,
q(1r) = Pl = 4

where Eq. (50) is a reformulation of Eq. (18) using the uncertain
dynamics defined in Eq. (35).

As illustrated in Table 2, the known state trajectories
{q(P),q(P"),§(P"),v(P"),»(P")} are deterministic but the applied
inputs 7(&) are uncertain and are modeled using the gPC techni-
ques reviewed in Sec. 4.

Given the uncertain applied inputs, the most interesting part of
Eq. (50) comes in the definition of the objective function terms
and constraints. These terms now have the ability to approach the
design accounting for uncertainties by way of expected values,
variances, and standard deviations. Recalling the definitions of an
expected value and variance, Eqgs. (21)—(23) may be redefined
statistically:

ni oty
Js3 = er

i=1 J10=0

E[z,-(r,-(ﬁ, z))z] dt

n oty N2
_ ZJ 2 (<) (¥, W ar 1)
i=1 J100=0 j=0
n; 1
J§4 - Z [ “1171(57 l)yi(€7 )Hd[
i=1 Y=
n; e np
_ [f S [ard o) (w4, ) (52)
i=1 J%=0 j=0
ni iy ) 5
Jss = ZJ E[m(ii(&. 1)) a
i=1 =0
ni et np ) ) )
-3 Jf z (fg(z))2<lw, Wit (53)
i=1 J100=0 j=0

where z is a vector of (optional) scalarization weights. The func-
tion (51) defines the expected effort, Eq. (52) the expected power
with y;(&,1) = ¢:i(&,1), and Eq. (53) the expected jerk. Close
inspection of Table 2 shows that these statistically based objective
function terms are applicable to the inverse and hybrid dynamics
based motion planning formulations (50) and (55).
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Case Study. Application of Eq. (50) enables a designer to treat
all possible realizations of a given uncertain system when plan-
ning motions of fully actuated systems. To illustrate we will reuse
the simple fully actuated serial manipulator pick-and-place appli-
cation presented in Sec. 5.1 as shown in Fig. 1.

The design objective for this example is to minimize the time it
takes to move the manipulator from its initial configuration g, to the
target configuration ¢, . This results in a deterministic objective
function J = tr, which is frequently referred to as a time optimal
design. However, the payload mass M(¢) is defined to be uncertain
rendering the system dynamics uncertain. Since the uncertain serial
manipulator is a fully actuated system, where the joints
q = {q1, ¢} are actuated with the input wrenches © = {ty, 12}, the
motion planning problem may be appropriately defined by (50).

By parameterizing the deterministic joint trajectories with B-
splines, as in Eq. (4), Eq. (50) results in a finite search problem
seeking for spline control points P that minimize the trajectory
time ;. Therefore, the problem’s optimization variables are
x = {P7 tf}.

The actuators are bounded in their torque supply and the manip-
ulator should neither hit the wall it is mounted to nor the obstacle.
The constraints may therefore be defined as

ﬂfl‘f’O(,"O'T[S‘f
T< Uy — 0 Oy

C:{ =y <0 (54)

-y, <0
—D,’J SO

where i = 1,2 and j = obstacle for the signed distance D;; meas-
ured from each link of the serial manipulator to the obstacle.

Notice the bounding constraints on the input wrenches are
defined by their statistical mean and weighted standard deviations,
as in Eq. (48), to quantify their uncertainty. Ideally these con-
straints would be defined by the extremes of the wrench distribu-
tion (i.e., the supremum and the infimum), however, due to their
computational complexity the approximation by the mean and
tunable weighted standard deviation is used.

Since the state trajectories are deterministic, the signed obstacle
avoidance constraints —D;; < 0 and Cartesian wall avoiding con-
straints —y, —y, < 0 are deterministically defined.

This formulation allows a design engineer to answer the
question:

Given actuator and obstacle constraints, what is the “time
optimal” motion plan that accounts for all possible systems within
the probability space?

Without accounting for the uncertainty directly in the dynamics
and motion planning formulations, design engineers would have a
difficult time answering this question.

The solution to this problem with the deterministic formulation,
as defined in Eq. (18), results in a time optimal solution of 7 = 1.12
s where all system parameters are set equal to one, 0; = 1 (with SI
units), with initial conditions ¢(0) = {(n/6),(n/6)} and
4(0) = {0,0} rad, terminal conditions g (t;) = {—(n/6), —(/6)}
and ¢(tr)={0,0} rad, and t=—10,7=10 Nm. The resulting
optimal input wrench time history is shown in Fig. 5.

The solution from the new formulation, as defined in Eq. (50)
with constraints defined by Eq. (54) and weighting factor o; = 1,
Vi = {1,2}, results in a time optimal solution of # = 1.2's, where
all system parameters and initial/terminal conditions are defined
the same as in the deterministic problem. The only difference in
this problem definition when compared to the deterministic prob-
lem is the uncertain payload mass is modeled with a uniform dis-
tribution having a 1kg mean and 0.5kg standard deviation. The
resulting optimal uncertain input wrench time history is illustrated
in Fig. 6, where each input wrench is displaying its mean value
and bounding time histories u, *o; - oy, Vi = {1,2}. Also, the
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Fig. 5 The time optimal input wrench time histories for the
deterministic serial manipulator pick-and-place problem based
on the uncertain inverse dynamics NLP. This optimal solution
resultedinat; =1.12s.
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Fig. 6 The time optimal uncertain input wrench time histories
for the uncertain serial manipulator pick-and-place problem
based on the uncertain inverse dynamics NLP. Each input
wrench is displaying its mean value and bounding time histor-
ies u *a;-0, with o;=1,vi={1,2}. This optimal solution
resultedinat;=1.2s.

resulting configuration time history for the optimal uncertain
motion plan is shown in Fig. 7.

Therefore, the time optimal solution from the uncertain prob-
lem resulted in a more conservative answer (1.2s as compared to
1.12s). This is a sensible solution. Close inspection of Fig. 5
shows the deterministic solution drove the input wrenches to their
extreme bounds of 10N m at certain points during the motion
profile. Clearly introducing the uncertain mass to the system
affected the amount of input torque required for the system to reli-
ably follow the specified state trajectory. In fact, Fig. 6 shows the
distribution of input wrenches induced by the uncertain mass. The
uncertain optimal motion plan from Eq. (50) effectively pushed
the input wrench distribution inside the actuation limits {z,7}.
This results in a slower time optimal solution, however, all realiz-
able systems (within a tunable weighted standard deviation sense),
are now guaranteed to satisfy the constraints. In other words, the
time optimal solution to Eq. (50) produces the minimum time for
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the entire family of systems (again, within a tunable “weighted
standard deviation sense”). Relying only on the contemporary
deterministic problem formulation in Eq. (18) results in an unreal-
izable trajectory for a subset of the realizable systems.

A final observation is that the uncertain inverse dynamics motion
planning framework embodied in Eq. (50) is most applicable to con-
figuration/position controlled systems, where states are prescribed as
they are in Eq. (4). However, force controlled systems may be better
designed through application of Eq. (43) based on uncertain forward
dynamics as illustrated in the previous section, Sec. 5.1.

5.3 Hybrid Dynamics Based Uncertain Motion Planning.
The uncertain motion planning formulation based on hybrid
dynamics is

min J
x={P}

s.t.  Actuated kinematics
W(P') = (H("q(P),0))'“4(P")
“W(P") = (H(“q(P),0))""

<(eater) =) (G +

Hybrid dynamics

0H 0q _ 0H 0
dg ot 00 ot

“(¢) .
( ) = G(“q(P), “v(P"),“v(P"),"z(P), 0(¢))
“x(¢)

Unactuated kinematics

“q(&) ="H("q(&),0(£))"v(&)
Outputs

¥(&) = O(q(P; §),4(P'; ),0(8))

Constraints

C(y(¢),0(¢),7(¢)) <0
Hard actuated ICs and TCs conditions

(55)

“q(0) =P’ =g,

“4(0) = P =4,

ag(t) =P = “q,

ag() = apriy=1 _ “q,

Hard unactuated ICs and TCs conditions
“q(0;¢) = "q(&)
“4(0;8) = "4y(&)
“q(17:¢) = "q,(&)
“q(r:€) = "4, (%)

where Eq. (55) is a reformulation of Eq. (19) using the uncertain
dynamics defined in (36).

As illustrated in Table 2, the actuated states
{*q(P),*q(P"),*G§(P"),"v(P"),*»(P")} and the unactuated inputs
“t(P) are known deterministic quantities. Conversely, the unactu-
ated system states {“q(&),"q(&),"§(&),"v(&),"»(&)} and actuated
inputs “t(&) are uncertain and are modeled using the gPC techni-
ques reviewed in Sec. 4.

Case Study. The simple underactuated inverting double pendu-
lum problem (shown in Fig. 8) was selected to illustrate benefits

Journal of Computational and Nonlinear Dynamics

Fig. 7 The final optimal configuration time history of the
uncertain serial manipulator pick-and-place application involv-
ing collision avoidance and actuator constraints design with
the uncertain inverse dynamics NLP. (The initial configuration
starts at the target ‘x’ on the left and finishes at the ‘x’ target on
the right while progressively darkening from light gray to
black.)

*

) e

X

ql’Tl

¢ P
M(E), J(E)

feet(x,y)

Fig. 8 A simple illustration of the underactuated uncertain
hybrid dynamics motion planning formulation. This problem
aims to determine a power optimal motion plan to lift the pen-
dulum from the initial hanging configuration to an inverted ver-
tical configuration when subject to input wrench and terminal
condition constraints. This is an uncertain system due to the
uncertain mass of the payload.

of the uncertain motion planning based on the hybrid dynamics
formulation (55). The design objective of this example is to mini-
mize the power it takes to move the manipulator from its initial
hanging configuration g, to the target inverted configuration ¢, .
The double pendulum is an underactuated system, where on{y
joint g, is actuated (by input 7;), and the mass of the second link
is uncertain; therefore, the motion planning problem may be
appropriately defined by Eq. (55).
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Fig. 9 The power optimal configuration time history for the
deterministic inverting double pendulum. This optimal solution
resulted in a 1060 W design. (The initial configuration starts
with the double pendulum in the down position and swings up
to the vertical while progressively darkening from light gray to
black.)

By parameterizing the actuated state profiles with B-splines, as
in Eq. (4), and using the hybrid dynamics defined in Eq. (16), Eq.
(55) results in a finite search problem seeking for spline control
points P and terminal time ¢ that minimize the system’s power.
Therefore, the problem’s optimization variables are x = {P,If}.
Assuming a soft terminal error expected value condition is used,
the objective function becomes J = a - Jg; + b - Js4, where a and
b are scalarization constants.

The actuators are bounded in their torque supply. Additionally,
suppose the design has a specified variance in the terminal error
conditions (45) that must be satisfied. Implementing both of these
design constraints as hard constraints takes the form

T1<1t<7
C: 2 2

o (56)
e(ir) = “ely)

IN
Qi

where {t,7} are the minimum/maximum input bounds, respec-
tively, and 6?(;») is the maximum acceptable terminal error
variance. !

torque (N-m)
o= _/:3)
T

5
o -
=
g\\\
~
e
<//§

W
T{uto)

time (sec)

Fig. 10 The uncertain input wrench time history for the deter-
ministically designed motion plan applied to an uncertain
inverting double pendulum (where pu *os. with a=1). The
presence of the uncertainty results in both the maximum and
minimum input limits being exceeded.
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angle (rad)
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Fig. 11 The joint time histories for the deterministically design

motion plan applied to an uncertain inverting double pendulum
(where p,*as,, with «=1). The presence of the uncertainty
results in the expected terminal error condition not being satis-
fied with excessive variance.

This formulation allows a design engineer to answer the
question:

Given actuator and terminal error variance constraints, what
motion plan will minimize the system’s power over the trajectory
when accounting for all possible systems within the probability
space?

Without accounting for the uncertainty directly in the dynamics
and motion planning formulations, design engineers would have a
difficult time answering this question.

The solution to this problem with the deterministic formulation,
as defined in Eq. (19), results in an power optimal solution of
Jsi = 1060W with #r = 5.66 s, where all system parameters are
set equal to 6; = 1 (with ST units) except the length of the first
link is set to 0.5m, initial conditions ¢(0) = {—=,0} and
¢(0) = {0,0} rad, terminal conditions ¢(7;) ={0,0} and
4(1r) = {0,0} rad, and the input limits are T = —10,7 = 10 Nm.
The resulting optimal motion plan’s configuration time history is
shown in Fig. 9.

15}
1+

05¢

y (m)
o

Fig. 12 The power optimal configuration time history for the
uncertain inverting double pendulum based on uncertain
hybrid dynamics NLP, where {yyi —o; - 6y (solid), p, +; - 5y,

(dash—dot)},Vi={1,2} with « =1. This optimal solution
resulted in a 310 W design. (The initial configuration starts with
the double pendulum in the down position and swings up to the
vertical while progressively darkening from light gray to black.)
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Fig. 13 The uncertain input wrench time history resulting from
the motion plan generated by the new uncertain hybrid dynam-
ics NLP (where p_+aq, with o = 1). Both the maximum and mini-
mum input limits were satisfied, in a weighted standard
deviation sense, for all systems within the probability space.

The value of the new framework is best illustrated by applying
the deterministically designed motion profile to an uncertain sys-
tem. Figures 10 and 11 show the results of the deterministic
motion plan applied to a system with a single uncertainty where
the second link has an uncertain mass with p,, = 1kg and
a,znz = 0.5kg?. Figure 10 shows that the resulting input profile
exceeds both the upper and lower bounding constraints of
7= —10,7 = 10 Nm. Additionally, Fig. 11 shows that the target
terminal configuration was not satisfied and an excessive terminal
error variance is experienced.

Approaching the design with the new framework accounts for
the uncertainties up front during the optimal search and results in
a design that satisfies all constraints for all possible systems in
the probability space. This is accomplished by application of Eq.
(55) with constraints defined by Eq. (56), where 65(&) =0.01 m2.

This results in a power optimal solution of Jg =310W with
tr = 4.46 s (where the same uncertain second link mass is reused).
The resulting motion plan’s optimal uncertain configuration time

angle (rad)
8]
\\A

4 / —ql 4
/ a2(w
[ — 42 {uto)
_5 1 1 il il 1 il 1 1
0 05 1 15 2 25 3 35 4 45

time (sec)

Fig. 14 The joint time histories resulting from the motion plan
generated by the new uncertain hybrid dynamics NLP (where
Byp* 0,2 With « = 1). The resulting terminal error variance satis-

fies the specification 62, | =0.0032<6?, , =0.01m2.
e(tr) e(tr)
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history is illustrated in Fig. 12 where the bounding configuration
time histories {, — o; - 6y, (solid), u,, + o - 7y, (dash — dot) } are
displayed Vi = {1,2} with o; = 1. The Euclidean norm of the soft
expected value terminal configuration constraint was very accept-
able, E[e(y)] = 2.61 x 107m. Figure 13 shows that the input
wrench constraints for the entire probability space were satisfied
(within a tunable weighted standard deviation sense). Figure 14
show that the specified terminal error variance was also satisfied,
6%, |, =0.00321 < 5% , =0.0lm%.
e() e(r)
The reduced power of the uncertain design, as compared to the
deterministic design, makes sense in that the expected input val-
ues E[t] of the uncertain design (as shown in Fig. 13), are lower
than those in the deterministic design (as shown in Fig. 10). This
relationship is also true for ¢; (although are not illustrated), there-
fore, the product of the reduced expected torque and joint rate
yields a lower system power.

6 Conclusions

This work has presented a new nonlinear programming based
framework for motion planning that treats uncertain fully actuated
and underactuated dynamical systems described by ordinary dif-
ferential equations. The framework allows practitioners to model
sources of uncertainty using the generalized polynomial chaos
methodology and to solve the uncertain forward, inverse, and
hybrid dynamics using a least-squares collocation method. Subse-
quently, statistical information from the uncertain dynamics may
be included in the NLP’s objective function and constraints to per-
form optimal motion planning under uncertainty. Three case stud-
ies with uncertain dynamics illustrate how the new framework
produces an optimal design that accounts for the entire family of
systems within the associated probability space. This adds robust-
ness to the design of the optimally performing system.

In future work the authors will expand the new framework to
treat constrained dynamical systems described by differential
algebraic equations.

Acknowledgment

This work was partially supported by the Automotive Research
Center (ARC), Thrust Area 1.

Nomenclature
General

x,X = nonbolded variables indicate a scalar quantity
x,X = bolded lower case variables are vectors, upper
case variables are matrices
x; = bottom right index indicates a state
x/ = top right index indicates a stochastic coefficient,
or mode
X = bottom left index associates x to a specific
collocation point
“x,"x = top left annotations indicate if a given variable is
~actuated or unactuated
ix, = the four major variable annotations
x, X = lower and upper bounds on x
¢ = random variable

Indexes and Dimensions

m € N = number of B-spline knots

n, € N = number of multidimensional basis terms
ne, € N = number of collocation points

ng € N = number of degrees-of-freedom (DOF)

ngim € N = number of dimensions of the B-spline
(e.g., ng or n;)

n; € N = number of input wrenches, T € R™

n, € N = number of outputs, y € R"™

n, € N = number of parameters

ny € N = number of states
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ng € N = number of B-spline basis and control points
o € IN = spline degree
Po € N = polynomial order

Dynamics

C € R’ = centrifugal, gyroscopic, and Coriolis terms
H € R"™*" = kinematic mapping matrix relating rates of gen-
eralized coordinates to generalized velocities
M € R™*™ = square inertia matrix
N € R™ = generalized gravitational and joint forces
O € R"™ = output operator
g € R" = independent generalized coordinates
q,q = rates and accelerations of generalized
coordinates
S € R™"*™ = applied input selection matrix
v,v € R™ = generalized velocities and accelerations
y € R™ = system outputs
0 € R = uncertain parameters
7 € R" = input wrenches

Uncertainty Quantification

A € R"™*"» = collocation matrix
w(&) = joint probability density function
X, X; € R"™ = k™ intermediate variable of the ith state repre-
senting expanded quantity
oM 1t € R = kth collocation point

Y € R"™ = multidimensional basis terms
¥ € RP”*! = single dimensional basis terms
Q = random event sample space

Nonlinear Programming

B = B-spline curve
C = inequality constraints (typically bounding
constraints)
D;,; = a signed minimum distance between two
geometric bodies i and j
J = scalar objective function
min = optimization objective through the manipulation
variables in x
P= {p_’i = B-spline control points where i = 0, ..., n,
= derived control points for velocity B-splines
) where i =0, ..., (ng — 1)
P = {p” ’} = derived control points for acceleration B-splines
where i =0, ..., (ng — 2)
1y = final time of trajectories
z; = scalarlization weights for the individual input
wrench contributions
o; = linear weight coefficient for defining uncertain
. constraints as a function of the std[x], o,
f"¥ = B-spline basis terms of degree p and
i=0,...,ng
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