
Modular Low-Cost Humanoid Platform for Disaster Response

Seung-Joon Yi∗, Stephen McGill∗, Larry Vadakedathu∗, Qin He∗,
Inyong Ha†, Michael Rouleau‡, Dennis Hong‡† and Daniel D. Lee∗

Abstract— Developing a reliable humanoid robot that oper-
ates in uncharted real-world environments is a huge challenge
for both hardware and software. Commensurate with the
technology hurdles, the amount of time and money required
can also be prohibitive barriers. This paper describes Team
THOR’s approach to overcoming such barriers for the 2013
DARPA Robotics Challenge (DRC) Trials. We focused on
forming modular components – in both hardware and software
– to allow for efficient and cost effective parallel development.
The robotic hardware consists of standardized and general
purpose actuators and structural components. These allowed
us to successfully build the robot from scratch in a very short
development period, modify configurations easily and perform
quick field repair. Our modular software framework consists
of a hybrid locomotion controller, a hierarchical arm controller
and a platform-independent operator interface. These modules
helped us to keep up with hardware changes easily and to
have multiple control options to suit various situations. We
validated our approach at the DRC Trials where we fared very
well against robots many times more expensive.

Keywords: DARPA Robotic Challenge, Humanoid Robot,
Modular Design, Full Body Balancing Controller

I. INTRODUCTION

The ultimate goal of humanoid robotics is to work in typ-
ical environments designed for humans. However, until very
recently, most humanoid robotics research focused on small
subsets of that goal – such as walk control, human robot
interaction or stationary manipulation in well controlled lab-
oratory environments. Attempts to build a complete, robust,
remotely operated humanoid robot system for practical tasks
have been deterred mainly due to the steep hardware costs
as well as the risks associated with operating an intrinsically
unstable humanoid in uncontrolled environments.

Sponsored by the United States Department of Defense,
the DARPA Robotics Challenge [1] (DRC) pushes for big
breakthroughs in humanoid robotics by providing a standard
platform humanoid robot [2] and funding to selected teams,
as well as special prizes for the winning team. The DRC
specifically requires a complete system that can use human
tools, drive a vehicle, and move around in unstructured
human environments. Laden with uneven blocks, ladders,
doorways, many such tasks require full body control and
cohesion amongst the software components hitherto not seen

∗ GRASP Lab, University of Pennsylvania, Philadelphia, PA 19104
{yiseung,smcgill3,vlarry,heqin,ddlee}
@seas.upenn.edu
† Robotis, Co. Ltd. Seoul, Korea dudung@robotis.com
‡ Virginia Tech, Blacksburg, VA 24061 mrouleau@vt.edu
‡† University of California, Los Angeles, CA 90095
dennishong@ucla.edu

Fig. 1. The THOR-OP robot holds a drill in hand while walking stably.

before. Such requirements pose a great challenge for hard-
ware and software; an especially short preparation time for
the DRC Trials further mandates a very limited development
period allowed for each team.

With the limited time frame and varied operation re-
quirements, we focused our development on modularity
and cost effectiveness. Our hardware is very unique; all
of the advanced actuators and structural parts are general
purpose, standardized parts for the commercial market. The
robot is assembled simply by bolting generic actuators and
custom mounting brackets together, which allowed us to
keep development cost very low and manufacture and repair
speeds immensely fast. Finally, the estimated cost of our
robot with only necessary sensors and hardware was much
lower than we expected due to clever adaptable design.

Modularity in our software framework stemmed from the
decision to extend our RoboCup humanoid soccer software
framework [3] that controlled a number of small humanoid
robots such as the Nao and DARwIn-OP. We were able to
quickly port our software to the new THOR-OP (Tactical
Hazardous Operations Robot, Open-Platform), including a
wheeled intermediate THOR-OP version - THOR Centaur,
by swapping only the hardware interface module, a config-
uration file, and the kinematics definitions. Similarly, we
could simulate the robot using the Webots [4] robotics
simulator with minimal changes of the code for other plat-

2014 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS 2014)
September 14-18, 2014, Chicago, IL, USA

978-1-4799-6934-0/14/$31.00 ©2014 IEEE 965

Fig. 2. Front and side views with dimensions (unit: mm) of a THOR-OP
drawings with 6 degree of freedom arms.

forms. This reusable and extensible nature drove our inter-
process software stack, where multiple methods could access
sensor feeds and robot commands. With a focus on state
machines, we divided tasks into smaller projects to allow
for parallel development without complete knowledge of the
whole system. Finally, we developed multiple hierarchical
modules for locomotion and manipulation control that can
be dynamically selected to suit the current situation.

The remainder of the paper proceeds as follows. Section
II describes the hardware platform we used for the DRC
Trials. Section III explains the overall software structure and
the interface. Section IV discusses the perception system
including both visual and audio feed. Section V and VI
describe our motion controllers, which includes the sampling
based arm motion controller and the hybrid Zero Moment
Point (ZMP) based locomotion controller with push recovery.
Section VII describes our user interfaces to remotely operate
the robot. Section VIII presents results at the DRC Trial held
December 2013. Finally, we conclude with a discussion of
potential future work.

II. HARDWARE ARCHITECTURE

The THOR-OP robot used by Team THOR at the DRC
Trials in December 2013 consisted of 31 actuators, 7 in
each pair of arms, 6 in each pair of legs, 2 in the torso,
2 for the head, and 1 for panning the chest LIDAR. The
robot stands 1.47m tall, weighs 49kg and has a wingspan
of approximately 1.95m. The arms and legs have shock
absorbing padding to protect the robot in the event of a
fall and there is a roll cage around the upper body both
for protecting the sensors and computer, and for ease of
handling.

Fig. 3. The structural components for a single THOR-OP robot use
standardized dimensions.

(a) 6 DOF arm

(b) Initial 7 DOF arm

(c) Final 7 DOF arm

Fig. 4. Three different arm configurations evolved during development for
the THOR-OP. The 7th DOF was added to wrist for better dexterity.

A. Modular Actuator and Structural Components

For actuators, the new series of Dynamixel Pro servo-
actuators developed by Robotis, Co. Ltd are used at most
joints. THOR-OP uses three different motor types: H42-
20-S300-R, H54-100-S500-R and H54-200-S500-R. They
are rated at 20W, 100W and 200W respectively and can
be fitted with a number of different reduction gear boxes.
For the THOR-OP platform, two different gearboxes are
used, one with in-line output axle and one with parallel
output axle. Both gearboxes use cycloidal reduction gears
that have higher impact tolerance than common harmonic
drives. Communication with the actuators is done via four
RS485 buses.

In addition to the servo-actuators, the robot is mainly built
with standardized structural components that are designed
to be used with the Dynamixel Pro servo-actuators. They
are extruded aluminum tubings and brackets with regularly
spaced bolt holes, and one can easily put them together
with hex bolts. The total man-hour needed for a complete
assembly from parts is estimated at 24 hours. With the benefit
of the modular construction of the robot, we could quickly
iterate through a number of different designs. Figure 4 shows
the the evolution of arm design over the course of our testing.
The request of changes in DOF and link lengths based on

966

Fig. 5. The gripper for the DRC Trials consisted of two under actuated
fingers to wrap around an object, and a rigid palm to give support.

simulations and test experience were able to be completed
in a very short time by our mechanical team.

B. End Effector

One of the few non-standard parts we used for the robot is
the end effector. Over the course of our preparation for the
DRC trials, we iterated over multiple gripper designs, and
the final design incorporated two active fingers controlled
by small Dynamixel MX-106R servomotors and a passive
palm at the other side. Each finger has a passive joint with a
spring-loaded linkage mechanism [5] to allow the finger to
conform to a varied range of objects including drills, hoses
and wooden blocks [6]. Each hand, like the one shown in
Figure 5, weighs 767 grams.

In addition to the gripper hand, we used a number of
passive end effectors for tasks that did not require finger
actuation. One such end effector was a two-spoke mechanism
that was used to align at the center of the valve and allow
continuous rotation of the wrist for completing the valve task
without having to reposition the body. Yet another simple
mechanism was a long angled hook that was designed for
opening the door without the need to grip the handle with
the gripper.

C. Electronic Systems

The overall system structure and interfacing on THOR-
OP is shown in figure 6. Two Axoimtek computers with
1.65GHz dual core AMD G-series APUs were available
to perform high level computation, although only one was
used in competition. Communication from these computers
to the actuators was divided into four independent chains of
RS485s over one USB to RS485 interface board. The robot
operates on 24V for computers and actuators, saving for
the LIDAR motor which requires a down-converted 12.5V
supply. The maximum current the robot has drawn at any
time is 20A; for this reason, the computer and the servo
system reside on a separate supply to mitigate harmful
current spike effects. With this separation, the emergency
stop switch kills only the servos when required, leaving the
computer unaffected.

Fig. 6. The overall structure of the THOR-OP hardware interconnections
includes four independent motor communication buses.

D. Sensory Components

The THOR-OP robot has a broad range of sensors. On
the head, one Logitech C920 HD ProWebcam USB camera
provides up to HD video coupled with a stereo microphone.
For more situational awareness, each wrist is equipped with a
Logitech C905 Webcam. Also the robot is equipped with two
ethernet based Hokuyo UTM-30LX-EW LIDAR sensors, one
on the head and one in the chest. The head LIDAR, mounted
horizontally, is mainly used to generate a 2D map using the
SLAM algorithm described in [7]; however, this function
was unused during competition. The chest LIDAR mounted
vertically on a panning servo is used to generate a local 3D
mesh of objects in front for manipulation. We have found
that the LIDARs were not affected by direct sunlight even
without any special shades or covers.

We used a Microstrain 3DM-GX3-45 inertial sensor lo-
cated close to the center of mass of the robot, and utilized
its raw accelerometer and gyro data, with extended Kalman
filtered pose estimates. The robot also has one ATI Mini58
force-torque sensor and four Interlink FSR402 force-sensing
resistors at each ankle, that are queried through external
analog-in ports of the Dynamixel servos.

III. SOFTWARE ARCHITECTURE

There are many advantages to our modular software de-
sign. Each module performs logically discrete functionality,
built separately from each other. When assembled together in
a proper hierarchy, they constitute the application program.
This type of system is very reusable and extendable; in fact,
we reused many modules from our own open-source code
base for RoboCup [3] to save time and effort.

We modularized our software architecture in several ways.
First, we set aside processes to interface with each hardware
device, including cameras, laser scanners, motors, and human
interface devices. Each process had a twin sub-process in
our simulation environment, such that minimal code modi-
fications were needed to have the system run in simulation
or on real hardware. Furthermore, we made a module that
translated generic robot commands and queries into robot
specific kinematics and motor packets, with the intention
that a new robot platform needs only a similar module

967

Fig. 7. The overall control system layout provides important separation of
modules.

conforming to the API. Next, we constructed state machine
modules that ran independently in a behavior process –
ones for the overall body, the arms, the legs, the head, and
the laser scanner. Finally, we formed operator modules to
communicate data and commands with the robot, such that
user interfaces could be mixed and matched.

A. Communication Architecture

In the DRC competition, the bandwidth and latency over
the IP network alternated each minute between good and bad
conditions. The good communication condition was 1Mbps
bandwidth paired with 100 ms round trip delay, while bad
communication was 10Kbps paired with a 1000ms. Due
to variable bandwidth provided, we allowed for operator-
specified on-the-fly configurable compression techniques and
transmission frame rates of the camera and LIDAR data.

On board the robot, communication channels included
Boost shared memory segments [8] and ZeroMQ message
queues [9]. While these inter-process channel assets would
reside on one single computer, we leveraged ZeroMQ’s re-
quest/reply method (and UDP fallbacks) to provide a remote
operator with access. For instance, in cases where the inverse
kinematics solver was not able to find solutions for arm
trajectories due to odd arm configuration or limits on range
of motion being reached, the operator could manually over-
ride high-level arm configuration or joint angles. The user
could dynamically select between UDP and ZeroMQ’s TCP
PUB/SUB methods. All metadata was efficiently serialized
via MessagePack [10].

We tested extensively with settings on the MiniMaxwell
network-shaper that ultimately was used in competition. We
tested our network setup under more duress than the com-
petition would provide, dropping 25% of packets, enabling
reordered packets, and doubling the lag to 2000ms round trip
times. We were always able to communicate effectively with
the robot and observed no incorrect behavior. Our testing
provided a larger degree of safety certainty and assurance of
at least network robustness.

Fig. 8. Fast mesh (top left) and slow mesh (top right) methods provided
3D constructions from the LIDAR. Head (bottom left) and hand (bottom
right) cameras provided two important perspectives for manipulation.

IV. PERCEPTION SYSTEM

The perception system was responsible for providing the
human operator the information of the task environment,
as well as the current and estimated states of the robot
needed for motion control. Our sensor selection included a
nine axis GPS-enabled IMU, multiple RGB cameras at head
and wrists, two LIDARs, two force-torque (FT) sensors at
that ankles and joint encoders in every joint. Among those
sensors, the IMU, joint encoders and FT sensors are used
constantly for state estimation and balancing of the robot;
all others provide on-demand data for operator, depending
on need and network quality.

A. 3D Reconstruction

We used only the Hokuyo LIDAR located within the chest
of the robot. The sensor scanned vertically while panning
horizontally. The depth data from this LIDAR was utilized to
produce a 3D mesh of the environment and objects near the
robot. The human operator was then able to locate the targets
in 3D space and set up reference frames for motion planning.
In practice, we used 90 degree and 60 degree vertical and
horizontal fields of view, respectively.

To adapt to the limits on bandwidth usage, we used
two different settings to filter and compress the LIDAR
readings. For navigation we used “fast mesh” which was
relatively noisy and showed surroundings within a range of
5 meters. This coarse image could be frequently requested
without incurring network penalties. “Slow mesh” showing
only close objects with much finer resolution was used during
manipulation since it provided more accurate information.

B. Video Processing

We used multiple camera streams to provide robot views
to the human operator. The main camera was mounted at the
head, with two additional cameras mounted on each hand.
The operator views from the hands during manipulation

968

TABLE I
SENSOR STREAM SETTINGS

Visual Compression Quality Interval Frame Size
format (0-100) (Hz) (kB)

Fast Mesh JPEG 90 0-.5 5-20
Slow Mesh PNG - - 30-40
Head Image JPEG 60 0.5-2 3-5
Hand Image JPEG 50 0.5 3-5

proved extremely helpful for turning the valve and gripping
the drill, which constantly required precise depth perception.

The quality of both the head and hand cameras were able
to be specified by user through shared memory variables.
We did find that when higher resolutions were used with
the poor network profile, packets would begin to overflow
the network, and we incurred latencies of around 10 seconds
until the good network profile was activated. Due to this,
we kept our camera settings very conservative through the
competition, as shown in Table I. In general, low resolution
and low frequency provided adequate operator awareness
of the environment and end effector positioning during the
competition.

C. Audio Feedback

One issue we had with testing the DRC tasks is that it
was hard for the operator to determine whether the robot had
successfully triggered the drill based on low frame-rate video
alone. To handle this issue, we used the built-in microphone
of the head camera to get audio feedback from the robot.
The remote operator, when needed, requested a five second
audio clip recorded at 16kHz, compressed in the MP3 format
with a bit rate of 8kbps. The size of such an audio file was
under 30KB (similar to our PNG mesh images) so it added
very little burden to the network when being transmitted.

V. MANIPULATION CONTROL

The THOR-OP has a total of 34 degrees of freedom
that are controlled by two separate controllers: the upper
body motion controller for the arms, neck and waist and
the lower body motion controller for the leg joints. The
two controllers function separately, which enables the robot
to locomote during manipulation, yet they are coupled so
that the robot can keep balance in spite of different arm
configurations. Here we describe the upper body motion
controller that moves the neck, arm and waist joints for
various manipulation tasks.

A. High Level Arm Control

High level arm control is done by specifying the reference
trajectory of the end effector in Cartesian space, configured
by a list of arm motion commands. The commands include
the movement in Cartesian space as well as rotation, while
fixing the wrist position and updating direct joint control. In
addition to those basic arm commands we also define more
complex parameterized trajectories for manipulation tasks
such as opening the door. To prevent the arm from getting

Fig. 9. The quasistatic full body balancing control moved the torso
significantly to offset the weight of the arms.

stuck at a bad configuration, the arm planner is designed to
make sure that every planned arm trajectory is allowed to be
executed only after confirming it is feasible.

B. Arm Planning

We use a simple sampling based approach to control the
arms. We define the reference trajectory as a list of arm com-
mands, and sample a number of points along the trajectory
in 6D space. At each point, we sample a number of different
shoulder yaw angles first, and used a closed form inverse
kinematics solution for 6DOF arm to generate remaining
six joint angles for each shoulder yaw angle. Finally, we
find a locally optimal path that connects the sampled points
to generate the joint-level keyframe for the arm movement.
Then, the arm motion is executed by interpolating the points
in joint space.

C. Full Body Balancing Controller

One tricky part for manipulation tasks is that different
arm posture changes the mass distribution, and the robot
must compensate for it to keep balance, usually by moving
the torso or using push recovery techniques [11]. Yet, in
order for the end effector to reach its target position, the
arm postures also need be adjusted to compensate for the
shifted torso position. Our approach maintains two torso
COM positions: the virtual one, which coincides with the
COM when arms are in the initial positions, and the actual
one, which balances the robot. At every step, the upper body
COM is calculated using the forward mass model of the
robot, and the gripper target positions are compensated to
take the difference between virtual and actual torso position.
Finally, the difference is used in the lower body motion
controller to offset the pelvis position to keep the COM of
the entire body at the center of the support polygon.

VI. LOCOMOTION CONTROL

Overall, the locomotion of the robot, shown in Figure
10, can be controlled in three different modes. The direct
mode, which uses the latency-free analytic ZMP controller,
can control the velocity of the robot for every step. The
next step position is calculated based on the current foot

969

Fig. 10. THOR-OP robot demonstrating dynamic bipedal walking capability

configuration, the target velocity and kinematic constraints.
The preview mode uses the target pose of the robot to
generate a number of optimal steps to reach the pose,
and uses the preview controller for locomotion. Finally, the
special mode is involved for special cases such as stepping
over a block. For each mode, the start and end of locomotion
is handled by a preview controller for a smooth transition
between standing and walking states.

A. Hybrid Walk Controller

We use a hybrid locomotion controller [12] which can
switch dynamically between a standard ZMP preview con-
troller that uses linear quadratic optimization and a reactive
ZMP-based controller that uses a closed-form solution of
the linear inverted pendulum equation. The main benefit
of this approach is that it provides a less computationally
expensive, latency-free locomotion pattern best suited for
direct teleoperation, as well as a standard preview based
walking using future foothold positions.

B. Push Recovery Control

To cope with unexpected perturbations, we have added
two different types of push recovery control [13] that use the
current state estimation from the IMU and joint encoders. An
ankle strategy is implemented by controlling the target joint
angle of the position controlled ankle joint, which generates
a control torque as a result, and the stop reflex strategy
stops walking and lowers the center of mass to resist large
perturbation.

VII. OPERATOR CONSOLE

We designed the remote operator interface in consideration
of changing network situations, variable human assistance
levels, and modular subsystems for online GUI modifica-
tions. We felt that it was incredibly important for a trained
operator of the robot to be able to access any available
resource on the robot at a moment’s notice, and kept this
design paradigm in mind. Ultimately, we utilized both a web
page interface and a slew of terminal based programs to
guide the robot through the variety of tasks.

A. Operator Console Setup

The basic operator setup is shown in Figure 12, which
includes a laptop, an external display and an iPad. The
monitor displays the head camera feed, while the iPad takes
touch inputs for gripper control and displays the visual
feedback of the hand camera feed. The main laptop screen
shows the 3D scene with the robot model and the pertinent
buttons for commanding the robot. During the DRC Trials,
we used the second laptop to monitor various processes of
the robot and provide low level control of the robot via SSH
sessions. In this configuration, we were able to utilize all
levels of granularity for controlling our robot.

B. Command Line Interface

The basic mode of interacting with the robot was through
an interactive Lua shell over SSH that provided raw access to
shared memory and state machines events. In case a higher
level controller fails, we can access a very low level behav-
iors of the robot in this shell. Another mode of controlling
allows for task-specific commands via more refined terminal
scripts, where we used specific key presses to directly initiate
state machine events or manually override target positions of
the end effectors, accessed over SSH. Different scripts were
constructed for various purposes (locomotion, manipulation,
or even a single task like driving) so that interference
between sub processes was reduced to a minimal level during
both test and competition.

C. Graphical User Interface

Command line scripts lack an ability to display rich sensor
information; to this end, we designed an HTML5 based
graphical user interface (GUI). Browser support allowed for
cross platform development and during the competition; we
operated iOS, OSX, and Linux platforms simultaneously.
One master NodeJS [14] server bridges ZeroMQ messages
and raw UDP packets from the robot to WebSockets mes-
sages for the browser. The browser’s JavaScript console
helped in identifying network conditions and in overall
debugging. In fact, the JavaScript, CSS, or HTML code was
occasionally modified on-the-fly during a run.

970

Fig. 11. The system layout for the operator interface allowed multiple
machines to be used simultaneously.

Fig. 12. The operator interface setup included three main screens for the
user to guide the robot and observe its environment.

A WebGL canvas using the THREE.js [15] framework de-
livered 3D views, shown in Figure 8, of both LIDAR returns
and the robot’s configuration given joint position feedback
and inertial readings. This framework allows the user to set
world coordinates for waypoints or end effector positions
with good awareness. We triangulated LIDAR returns into a
mesh similar to methods described in [16], with additional
filters for the ground. While the computation cost was high
for mesh fabrication, LIDAR readings were broadcast much
slower than the computation time, and the operator perceived
no lag in GUI experience since a WebWorker performed the
calculation in a background thread.

VIII. RESULTS

THOR-OP’s modularity in both hardware and software
was put to the ultimate test at the end of December, 2013
when the DRC Trials were held at the Homestead Motor
Speedway in Florida. THOR-OP represented Team THOR
and took front stage to perform quite well at the Homestead
speedway. THOR-OP attempted all eight tasks set forth by
the DRC and competed well, only succumbing to a couple
unexpected hardware, software and setup logistical issues.
Overall, we accrued 8 points and finished in 9th place out
of 16 teams.

We had a few cases of damaged actuators during the trial
– one just minutes before the ladder task – but thanks to
the “modular” nature of the robot’s hardware, we replaced
the damaged actuator within minutes and went on to score
on the task. This also allowed us easily use task-specific
appendages, which greatly helped THOR-OP handle manip-
ulation tasks more efficiently.

On the software side, we have found our locomotion
controller with push recovery was quite capable in practice,
which kept the robot standing upright in spite of various
perturbations that made many other robots fall down and
fail to complete the tasks. Additionally, our layered arm
controller proved to be very competitive and robust in spite
of its simplicity. Evidence of our stability and robustness
was found in the valve task, where we were awarded “Best
In Task” for fastest completion time among all teams.

Finally, we have found that our software framework de-
manded surprisingly little amount of computational power,
averaging only 25% of the CPU time of a single on-board
computer. A graphical comparison of the DRC teams and
their performances at the trials can be seen in figure 14
(courtesy of the DRC organizing committee).

IX. CONCLUSIONS

We provided a detailed description of Team THOR’s
algorithms and technical approaches to the 2013 DARPA
Robotics Challenge Trials. To handle the great challenge of
developing a bipedal disaster response robot from scratch,
we heavily focused on modularity of both hardware and
software structures. Important benefits included rapid field
repairability of the robot, low development and manufactur-
ing cost, and reduced development time – all vital aspects
for any robotic approach to disaster response. The Trials
results show that our hardware and software platform is very
capable and we look forward to the finals next year for an
even better performance from THOR-OP. Our future work
will focus on providing more robot autonomy, incorporating
the full dynamic properties of the robot for motion planning
and balancing, and adding more analysis of high dimensional
sensor feeds.

ACKNOWLEDGMENTS

We acknowledge the Defense Advanced Research Projects
Agency (DARPA) through grant N65236-12-1- 1002. We
also acknowledge the support of the ONR SAFFIR program
under contract N00014-11-1-0074.

REFERENCES

[1] United States Department of Defense, “DARPA Robotics Challenge,”
Apr. 2012. [Online]. Available: http://go.usa.gov/mVj

[2] “Atlas - the agile anthropomorphic robot,” 2013. [Online]. Available:
http://www.bostondynamics.com/robot Atlas.html

[3] S. G. McGill, J. Brindza, S.-J. Yi, and D. D. Lee, “Unified humanoid
robotics software platform,” in The 5th Workshop on Humanoid Soccer
Robots, 2010.

[4] O. Michel, “Webots: Professional mobile robot simulation,” Journal
of Advanced Robotics Systems, vol. 1, no. 1, pp. 39–42, 2004.

[5] T. Laliberte, L. Birglen, and C. Gosselin, “Underactuation in robotic
grasping hands.” Machine Intelligence and Robotic Control, vol. 4,
no. 3, pp. 1–11, 2002.

971

Fig. 13. THOR-OP at the 2013 DRC Trials performing four of five tasks in which it scored points.

Fig. 14. Teams performances match-up, where ‘K’ denotes the Team THOR.

[6] M. Rouleau and D. Hong, “Design of an underactuated robotic end-
effector with a focus on power tool manipulation.” in ASME Interna-
tional Design Engineering Technical Conferences and Computers and
Information Engineering Conference, 2014, submitted, under review.

[7] J. Butzke, K. Daniilidis, A. Kushleyev, D. D. Lee, M. Likhachev,
C. Phillips, and M. Phillips, “The university of pennsylvania
magic 2010 multi-robot unmanned vehicle system,” Journal of Field
Robotics, vol. 29, no. 5, pp. 745–761, 2012. [Online]. Available:
http://dx.doi.org/10.1002/rob.21437

[8] Boost c++ libraries. [Online]. Available: http://www.boost.org
[9] P. Hintjens. (2010) ZeroMQ: The Guide. [Online]. Available:

http://zguide.zeromq.org/page:all
[10] Messagepack serialization library. [Online]. Available: http://www.

msgpack.org
[11] S.-J. Yi, S. G. McGill, B.-T. Zhang, D. Hong, and D. D. Lee,

“Active stabilization of a humanoid robot for real-time imitation of a

human operator,” in IEEE-RAS International Conference on Humanoid
Robots, 2012, pp. 761–766.

[12] S.-J. Yi, D. Hong, and D. D. Lee, “A hybrid walk controller for
resource-constrained humanoid robots,” in IEEE-RAS International
Conference on Humanoid Robots, 2013.

[13] S.-J. Yi, B.-T. Zhang, D. Hong, and D. D. Lee, “Online learning of
a full body push recovery controller for omnidirectional walking,” in
IEEE-RAS International Conference on Humanoid Robots, 2011, pp.
1–6.

[14] Node.js webserver. [Online]. Available: http://www.nodejs.org
[15] R. Cabello. Three.js javascript webgl library. [Online]. Available:

http://www.threejs.org
[16] D. Holz and S. Behnke, “Fast range image segmentation and smooth-

ing using approximate surface reconstruction and region growing,” in
Intelligent Autonomous Systems 12. Springer, 2013, pp. 61–73.

972

